21 results on '"Vorköper, A."'
Search Results
2. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
- Author
-
W7-X Team, Beidler, C. D., Smith, H. M., Alonso, A., Andreeva, T., Baldzuhn, J., Beurskens, M. N. A., Borchardt, M., Bozhenkov, S. A., Brunner, K. J., Damm, H., Drevlak, M., Ford, O. P., Fuchert, G., Geiger, J., Helander, P., Hergenhahn, U., Hirsch, M., Höfel, U., Kazakov, Ye. O., Kleiber, R., Krychowiak, M., Kwak, S., Langenberg, A., Laqua, H. P., Neuner, U., Pablant, N. A., Pasch, E., Pavone, A., Pedersen, T. S., Rahbarnia, K., Schilling, J., Scott, E. R., Stange, T., Svensson, J., Thomsen, H., Turkin, Y., Warmer, F., Wolf, R. C., Zhang, D., Abramovic, I., Äkäslompolo, S., Alcusón, J., Aleynikov, P., Aleynikova, K., Ali, A., Anda, G., Ascasibar, E., Bähner, J. P., Baek, S. G., Balden, M., Banduch, M., Barbui, T., Behr, W., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., Böckenhoff, D., Böswirth, B., Böttger, L.-G., Borsuk, V., Boscary, J., Bosch, H.-S., Brakel, R., Brand, H., Brandt, C., Bräuer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Burhenn, R., Bussiahn, R., Buttenschön, B., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M. J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., Molin, A. da, Silva, A. da, Pena, A. de la, Degenkolbe, S., Dhard, C. P., Dibon, M., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Durodie, F., Edlund, E., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W. H., Figacz, W., Fontdecaba, J., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., García Regaña, J., Gates, D., Geiger, B., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Grulke, O., Guerard, C., Hacker, P., Han, X., Harris, J. H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hollfeld, K. P., Hölting, A., Höschen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kenmochi, N., Killer, C., Kirschner, A., Klinger, T., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., Köchl, F., Kolesnichenko, Y., Könies, A., König, R., Kornejew, P., Koschinsky, J.-P., Köster, F., Krämer, M., Krampitz, R., Krämer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Ksiazek, I., Kubkowska, M., Kühner, G., Kurki-Suonio, T., Kurz, P. A., Landreman, M., Lang, P., Lang, R., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., Lücke, A., Lumsdaine, A., Lutsenko, V., Maaßberg, H., Marchuk, O., Matthew, J. H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., Mönnich, T., Morisaki, T., Moseev, D., Murakami, S., Náfrádi, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Ngo, T., Nicolai, D., Nielsen, S. K., Niemann, H., Nishizawa, T., Nocentini, R., Nührenberg, C., Nührenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., Ölmanns, J., Ongena, J., Oosterbeek, J. W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfuß, D., Paqay, S., Pawelec, E., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., Pölöskei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., Récsei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., Röhlinger, H., Romé, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., Sanchez, M., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schlaich, A., Schlisio, G., Schluck, F., Schlüter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schröder, M., Schröder, T., Schroeder, R., Schumacher, H., Schweer, B., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipliä, S., Slaby, C., Sleczka, M., Spiess, W., Spong, D. A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Szabó, V., Szabolics, T., Szepesi, T., Szökefalvi-Nagy, Z., Tamura, N., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J. M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulipán, S., Unterberg, B., Vakulchyk, I., Valet, S., Vanó, L., Eeten, P. van, Milligen, B. van, Vuuren, A. J. van, Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Stechow, A. von, Vorköper, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Wauters, T., Wegener, L., Weggen, J., Wegner, T., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., Zuin, M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, Turbulence in Fusion Plasmas, and European Commission
- Subjects
Magnetically Confined Plasmas ,Tokamak ,Design ,Helias ,Nuclear engineering ,Magnetically confined plasmas ,01 natural sciences ,7. Clean energy ,Article ,Plasma physics ,010305 fluids & plasmas ,law.invention ,law ,Physics::Plasma Physics ,0103 physical sciences ,Nuclear fusion ,010306 general physics ,Engineering & allied operations ,Stellarator ,Physics ,Plasma fusion ,Multidisciplinary ,Toroid ,biology ,Plasma Physics ,Física ,Magnetic confinement fusion ,Plasma ,biology.organism_classification ,Energía Nuclear ,ddc:620 ,Wendelstein 7-X - Abstract
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization., Previously documented record values of the fusion triple product in the stellarator Wendelstein 7-X are shown to be evidence for reduced neoclassical energy transport in this optimized device.
- Published
- 2021
- Full Text
- View/download PDF
3. Overview of first Wendelstein 7-X high-performance operation
- Author
-
V. Moncada, S. C. Liu, M. Winkler, P. Pölöskei, A. Tancetti, Naoki Tamura, H. Neilson, M. Krychowiak, Michael Drevlak, K. H. Schlüter, S. A. Henneberg, R. Vilbrandt, N. A. Pablant, M. Schröder, B. van Milligen, Bernd Heinemann, K. Rummel, Jonathan Schilling, Torsten Stange, G. Orozco, Christian Brandt, N. Krawczyk, Suguru Masuzaki, Yunfeng Liang, T. Estrada, Wolfgang Biel, J. H. Harris, B. Unterberg, M. Sleczka, M. Marushchenko, R. Lang, N. Rust, J. P. Kallmeyer, Laurie Stephey, P. Aleynikov, E. Blanco, Hans-Stephan Bosch, B. Buttenschön, D. Mellein, B. Shanahan, M. Vervier, M. Yokoyama, C. Suzuki, Seung Gyou Baek, A. Lücke, Felix Schauer, Ya. I. Kolesnichenko, V. Borsuk, Th. Rummel, B. Gonçalves, R. König, H. P. Laqua, G. Ehrke, K. J. McCarthy, Manfred Zilker, Venanzio Giannella, O. P. Ford, E. Flom, S. Murakami, Andreas Schlaich, P. Xanthopoulos, M. Zanini, E. Ascasíbar, C. Nührenberg, A. Carls, H. Viebke, Y. Feng, A. da Molin, H. Hunger, S. Paqay, Y. Wei, M. Blatzheim, M. W. Jakubowski, F. Köster, T. Wauters, J.C. Schmitt, M. Hubeny, P. van Eeten, H. Damm, Joris Fellinger, Gábor Cseh, Christoph Biedermann, G. Claps, L. Rudischhauser, R. Stadler, J. Mittelstaedt, Matteo Zuin, Z. Szökefalvi-Nagy, M. Knaup, Ch. Linsmeier, Francisco Castejón, J. P. Koschinsky, Bernardo B. Carvalho, L. Wegener, C. Guerard, J.M. Hernández Sánchez, B. Mendelevitch, A. Grosman, S. Pingel, Horacio Fernandes, M. Endler, N. Vianello, Jörg Schacht, Anett Spring, Yu Gao, V. Rohde, Samuel Lazerson, J.H. Matthew, W. Kasparek, R. Neu, R. Burhenn, N. Panadero, Jörg Weggen, P.A. Kurz, Walter H. Fietz, R. Schroeder, Andrea Pavone, G. Offermanns, Ryo Yasuhara, P. Sinha, Massimiliano Romé, José Luis Velasco, Carsten Killer, P. Drewelow, X. Han, T. Windisch, Nengchao Wang, Axel Könies, E.M. Edlund, K. P. Hollfeld, K. Aleynikova, Malte Henkel, Detlev Reiter, S. Brezinsek, Z. Huang, Heinz Grote, S. Langish, Matthias Otte, Alessandro Zocco, Daniel Papenfuß, G. Satheeswaran, Monika Kubkowska, S. Obermayer, G. A. Wurden, Carsten Lechte, F. Wagner, M. Gruca, H. Zhang, Olaf Neubauer, Peter Traverso, T. Ngo, V. Bykov, E. Sánchez, Matt Landreman, Dirk Naujoks, I. Vakulchyk, Andreas Langenberg, E. Wang, B. Hein, I. Ksiazek, S. Valet, Mark Cianciosa, G. Schlisio, Taina Kurki-Suonio, Oliver Schmitz, Adnan Ali, F. Reimold, Shinsuke Satake, Luis Vela Vela, C. Slaby, F. Remppel, David Gates, S. Schmuck, B. Roth, Zhirui Wang, Heinrich P. Laqua, F. Schluck, Olaf Grulke, S. Wadle, A. Runov, Manfred Thumm, Florian Effenberg, G. Fuchert, A. Vorköper, M. Banduch, Jonathan T. Green, J. Nührenberg, F. V. Chernyshev, H. Braune, Ewa Pawelec, David Maurer, A. Winter, A. Charl, Hiroshi Kasahara, T. Mizuuchi, D. Zhang, D. Höschen, J. Riemann, Thomas Klinger, W. Leonhardt, S. Sipliä, Katsumi Ida, T. Jesche, G. Pelka, U. Stridde, Riccardo Nocentini, Alexandra M. Freund, P. McNeely, A. Gogoleva, Victoria Winters, V. Szabó, Wolf-Dieter Schneider, D. A. Hartmann, Fabian Wilde, H. Schumacher, J. Howard, A. van Vuuren, J.L. Terry, M. Nagel, C. Hidalgo, Georg Kühner, S. Wolf, Boyd Blackwell, Michael Cole, Barbara Cannas, D. Rondeshagen, P. Hacker, Torsten Bluhm, J. Kacmarczyk, Kunihiro Ogawa, A. Zeitler, I. Yamada, P. Rong, Tamara Andreeva, Hiroshi Yamada, G. Anda, N. Panadero Alvarez, Wilfried Behr, F. Purps, H. Esteban, Dag Hathiramani, R. Bussiahn, David Ennis, A. H. Reiman, D. R. Mikkelsen, M. Borchardt, B. Israeli, M. Grahl, M. Losert, T. Dittmar, E. Pasch, U. Kamionka, Toru Ii Tsujimura, Gabriel G. Plunk, Felix Warmer, Jeremy Lore, F. Durodié, M. Balden, B.J. Peterson, J.P. Bähner, R. Schrittwieser, Morten Stejner, M.J. Cole, S. Zoletnik, Kian Rahbarnia, O. Marchuk, T. Bräuer, M. Hirsch, R. Riedl, W. Figacz, H. Trimino Mora, S. Degenkolbe, H. Greuner, B. Böswirth, B. Schweer, Dorothea Gradic, S. B. Ballinger, S. Ryosuke, B. Missal, Jiawu Zhu, J. H. E. Proll, M. Czerwinski, A. Cappa, B. Wiegel, J. Loizu Cisquella, Per Helander, Sehyun Kwak, S. Marsen, L. Carraro, T. Ilkei, D. Pilopp, Gábor Náfrádi, S. Récsei, M. Houry, A. de la Peña, Yu. Turkin, T.A. Scherer, T. Schröder, A. Galkowski, P. Drews, H. Frerichs, Benedikt Geiger, A. Krämer-Flecken, M. Dibon, L.-G. Böttger, A. Czarnecka, R. Krampitz, J. Wendorf, N. Chaudhary, T. Kremeyer, A. da Silva, R. Kleiber, R. Sakamoto, J.-M. Travere, I. Abramovic, T. Funaba, Andreas Meier, Fabio Pisano, Holger Niemann, Mirko Salewski, R. Brakel, M. Mayer, X. Huang, Stefan Illy, Ph. Mertens, Naoki Kenmochi, F. Köchl, Peter Lang, J. Geiger, Albert Mollén, A. Hölting, T. Barbui, M. Lennartz, T. Szabolics, Hayato Tsuchiya, S. Renard, A. Lorenz, J. Krom, C. D. Beidler, J. Cai, Andreas Dinklage, Anne White, Ye. O. Kazakov, P. Junghanns, W. Spiess, J. M. García Regaña, S. Elgeti, J. W. Coenen, Thomas Sunn Pedersen, C. Li, T. Mönnich, Miklos Porkolab, R. Laube, Burkhard Plaum, A. Benndorf, Michael Kramer, J. Ongena, J. Svensson, Dmitry Moseev, U. Wenzel, Chandra Prakash Dhard, S. Tulipán, M. C. Zarnstorff, M. Sibilia, A. von Stechow, G. M. Weir, H. Maaßberg, U. Höfel, P. Scholz, Alexey Mishchenko, R. C. Wolf, D. Carralero, G. Kocsis, Ivan Calvo, J. Tretter, Didier Chauvin, Y. Li, J. Boscary, A. Puig Sitjes, Fumimichi Sano, Andrey Samartsev, Tamás Szepesi, A. Kirschner, Dirk Nicolai, Francesco Cordella, M. Rack, A. Alonso, G. Czymek, E. R. Scott, M. E. Puiatti, Stefan Kragh Nielsen, M. Vergote, H. Schmitz, H. Jenzsch, Donald A. Spong, K. Czerski, A. Knieps, Arnold Lumsdaine, L. Ryć, M. N. A. Beurskens, Matthias F. Schneider, Simppa Äkäslompolo, Ulrich Neuner, V. Perseo, Jim-Felix Lobsien, Gerd Gantenbein, Roberto Guglielmo Citarella, L. Pacios Rodriguez, L. Vano, S. Bozhenkov, J. W. Oosterbeek, H. Röhlinger, J. P. Knauer, T. Nishizawa, A.H. Wright, M. Jia, A. Goriaev, H. Brand, D. Böckenhoff, H. M. Smith, J. P. Thomas, T. Fornal, J. Baldzuhn, D. Loesser, K. Risse, John Jelonnek, T. Wegner, S. Jablonski, Martina Huber, V. V. Lutsenko, S. Sereda, J. Ölmanns, Tomohiro Morisaki, H. Thomsen, J. A. Alcuson, P. Kornejew, J M Fontdecaba, Kai Jakob Brunner, A. Werner, T. Kobarg, European Commission, University of Greifswald, Max Planck Institute for Plasma Physics, Technical University of Denmark, Princeton University, National Institute for Fusion Science, CIEMAT, EURATOM HAS, Massachusetts Institute of Technology, University of Wisconsin-Madison, Research Center Julich, Australian National University, Eindhoven University of Technology, University of Cagliari, Consorzio RFX, Universidade de Lisboa, CEA Cadarache, St. Petersburg Scientific Centre, Oak Ridge National Laboratory, University of Salerno, ENEA Frascati Research Center, Institute of Plasma Physics and Laser Microfusion, University of Szczecin, University of Milano-Bicocca, Auburn University, Karlsruhe Institute of Technology, Universidad Carlos III de Madrid, University of Stuttgart, Austrian Academy of Sciences, National Academy of Sciences Ukraine, Technical University of Berlin, Opole University of Technology, Fusion and Plasma Physics, University of Maryland College Park, Consiglio Nazionale delle Ricerche (CNR), Kyoto University, Culham Centre for Fusion Energy, Physikalisch-Technische Bundesanstalt, Los Alamos National Laboratory, Department of Applied Physics, Aalto-yliopisto, and Aalto University
- Subjects
Technology ,CONFINEMENT ,01 natural sciences ,impurities ,010305 fluids & plasmas ,law.invention ,ECR heating ,Divertor ,DENSITY LIMIT ,law ,Data_FILES ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,004 Datenverarbeitung ,Informatik ,Physics ,Glow discharge ,Condensed Matter Physics ,Content (measure theory) ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Electron temperature ,Atomic physics ,ddc:620 ,Stellarator ,Impurities ,Nuclear and High Energy Physics ,Technology and Engineering ,plasma performance ,chemistry.chemical_element ,Atmospheric-pressure plasma ,PHYSICS ,stellarator ,Physics::Plasma Physics ,NBI heating ,0103 physical sciences ,divertor ,010306 general physics ,Helium ,Plasma performance ,turbulence ,Física ,W7-X ,Turbulence ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,chemistry ,ddc:004 ,ddc:600 ,Energy (signal processing) ,SYSTEM - Abstract
The optimized superconducting stellarator device Wendelstein 7-X (with major radius , minor radius , and plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of with central electron temperatures were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to were reached with hydrogen pellet injection and helium gas fueling. Here, the ions are indirectly heated, and at a central density of a temperature of with was transiently accomplished, which corresponds to with a peak diamagnetic energy of and volume-averaged normalized plasma pressure . The routine access to high plasma densities was opened with boronization of the first wall. After boronization, the oxygen impurity content was reduced by a factor of 10, the carbon impurity content by a factor of 5. The reduced (edge) plasma radiation level gives routinely access to higher densities without radiation collapse, e.g. well above line integrated density and central temperatures at moderate ECRH power. Both X2 and O2 mode ECRH schemes were successfully applied. Core turbulence was measured with a phase contrast imaging diagnostic and suppression of turbulence during pellet injection was observed.
- Published
- 2019
- Full Text
- View/download PDF
4. Engineering design for the magnetic diagnostics of Wendelstein 7-X
- Author
-
T. Windisch, M. Y. Ye, T. Sieber, A. Dudek, Ulrich Neuner, V. Bykov, Kian Rahbarnia, X.B. Peng, A. Werner, Joris Fellinger, Stefan Thiel, K. Rummel, A. Vorköper, J. Geiger, K. Höchel, K. Grosser, F. Dobmeier, Martin Köppen, M. Endler, D. A. Hartmann, Dag Hathiramani, Olaf Grulke, B. Brucker, A. Carls, R. Laube, and A. Cardella
- Subjects
Physics ,Cryostat ,business.industry ,Mechanical Engineering ,Cyclotron resonance ,Plasma ,Electron cyclotron resonance ,law.invention ,Nuclear magnetic resonance ,Optics ,Nuclear Energy and Engineering ,law ,General Materials Science ,Electric current ,Wendelstein 7-X ,business ,Stellarator ,Rogowski coil ,Civil and Structural Engineering - Abstract
The magnetic diagnostics foreseen for the Wendelstein 7-X (W7-X) stellarator are diamagnetic loops to measure the plasma energy, Rogowski coils to measure the toroidal plasma current, saddle coils to measure the Pfirsch–Schluter currents, segmented Rogowski coils (poloidal magnetic field probes) to add information on the distribution of the plasma current density, and Mirnov coils to observe magnetohydrodynamic modes. All these magnetic field sensors were designed as classical pick-up coils, after the time integration of induced signals for 1/2 hour had been successfully demonstrated. The long-pulse operation planned for W7-X causes nevertheless significant challenges to the design of these diagnostics, in particular for the components located inside the plasma vessel, which may be exposed to high levels of microwave (electron cyclotron resonance) stray radiation and thermal radiation. This article focuses on the tests and modelling performed during the development of the magnetic diagnostics and on the design solutions adopted to meet the conflicting requirements. All pick-up coils foreseen for the initial operation phase of W7-X and their signal cable sections inside the plasma vessel and the cryostat are now installed, and their electronics and data acquisition are under preparation.
- Published
- 2015
- Full Text
- View/download PDF
5. Overview of first Wendelstein 7-X high-performance operation
- Author
-
Klinger, T., Andreeva, T., Bozhenkov, S., Brandt, C., Burhenn, R., Buttenschön, B., Fuchert, G., Geiger, B., Grulke, O., Laqua, H.P., Pablant, N., Rahbarnia, K., Stange, T., von Stechow, A., Tamura, N., Thomsen, H., Turkin, Y., Wegner, T., Abramovic, I., Äkäslompolo, S., Alcuson, J., Aleynikov, P., Aleynikova, K., Ali, A., Alonso, A., Anda, G., Ascasibar, E., Bähner, J.P., Baek, S.G., Balden, M., Baldzuhn, J., Banduch, M., Barbui, T., Behr, W., Beidler, C., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., Böckenhoff, D., Böswirth, B., Böttger, L.-G., Borchardt, M., Borsuk, V., Boscary, J., Bosch, H.-S., Beurskens, M., Brakel, R., Brand, H., Bräuer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Bussiahn, R., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carralero, D., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M.J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., da Molin, A., da Silva, A., Damm, H., de la Pena, A., Degenkolbe, S., Dhard, C.P., Dibon, M., Dinklage, A., Dittmar, T., Drevlak, M., Drewelow, P., Drews, P., Durodie, F., Edlund, E., van Eeten, P., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W.H., Figacz, W., Fontdecaba, J., Ford, O., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., García Regaña, J., Gates, D., Geiger, J., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Guerard, C., Hacker, P., Han, X., Harris, J.H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Helander, P., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hirsch, M., Hollfeld, K.P., Höfel, U., Hölting, A., Höschen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kazakov, Y.O., Kenmochi, N., Killer, C., Kirschner, A., Kleiber, R., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., Köchl, F., Kolesnichenko, Y., Könies, A., König, R., Kornejew, P., Koschinsky, J.-P., Köster, F., Krämer, M., Krampitz, R., Krämer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Krychowiak, M., Ksiazek, I., Kubkowska, M., Kühner, G., Kurki-Suonio, T., Kurz, P.A., Kwak, S., Landreman, M., Lang, P., Lang, R., Langenberg, A., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., Lücke, A., Lumsdaine, A., Lutsenko, V., Maaßberg, H., Marchuk, O., Matthew, J.H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., Mönnich, T., Morisaki, T., Moseev, D., Murakami, S., Náfrádi, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Neuner, U., Ngo, T., Nicolai, D., Nielsen, S.K., Niemann, H., Nishizawa, T., Nocentini, R., Nührenberg, C., Nührenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., Ölmanns, J., Ongena, J., Oosterbeek, J.W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfuß, D., Paqay, S., Pasch, E., Pavone, A., Pawelec, E., Pedersen, T.S., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., Pölöskei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., Récsei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., Röhlinger, H., Romé, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., Sanchez, E., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schilling, J., Schlaich, A., Schlisio, G., Schluck, F., Schlüter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schröder, M., Schröder, T., Schroeder, R., Schumacher, H., Schweer, B., Scott, E., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipliä, S., Slaby, C., Sleczka, M., Smith, H., Spiess, W., Spong, D.A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Svensson, J., Szabó, V., Szabolics, T., Szepesi, T., Szökefalvi-Nagy, Z., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J.M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulipán, S., Unterberg, B., Vakulchyk, I., Valet, S., Vano, L., van Milligen, B., van Vuuren, A.J., Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Vorköper, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Warmer, F., Wauters, T., Wegener, L., Weggen, J., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wolf, R.C., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, D., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., Zuin, M., Klinger, T., Andreeva, T., Bozhenkov, S., Brandt, C., Burhenn, R., Buttenschön, B., Fuchert, G., Geiger, B., Grulke, O., Laqua, H.P., Pablant, N., Rahbarnia, K., Stange, T., von Stechow, A., Tamura, N., Thomsen, H., Turkin, Y., Wegner, T., Abramovic, I., Äkäslompolo, S., Alcuson, J., Aleynikov, P., Aleynikova, K., Ali, A., Alonso, A., Anda, G., Ascasibar, E., Bähner, J.P., Baek, S.G., Balden, M., Baldzuhn, J., Banduch, M., Barbui, T., Behr, W., Beidler, C., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., Böckenhoff, D., Böswirth, B., Böttger, L.-G., Borchardt, M., Borsuk, V., Boscary, J., Bosch, H.-S., Beurskens, M., Brakel, R., Brand, H., Bräuer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Bussiahn, R., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carralero, D., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M.J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., da Molin, A., da Silva, A., Damm, H., de la Pena, A., Degenkolbe, S., Dhard, C.P., Dibon, M., Dinklage, A., Dittmar, T., Drevlak, M., Drewelow, P., Drews, P., Durodie, F., Edlund, E., van Eeten, P., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W.H., Figacz, W., Fontdecaba, J., Ford, O., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., García Regaña, J., Gates, D., Geiger, J., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Guerard, C., Hacker, P., Han, X., Harris, J.H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Helander, P., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hirsch, M., Hollfeld, K.P., Höfel, U., Hölting, A., Höschen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kazakov, Y.O., Kenmochi, N., Killer, C., Kirschner, A., Kleiber, R., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., Köchl, F., Kolesnichenko, Y., Könies, A., König, R., Kornejew, P., Koschinsky, J.-P., Köster, F., Krämer, M., Krampitz, R., Krämer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Krychowiak, M., Ksiazek, I., Kubkowska, M., Kühner, G., Kurki-Suonio, T., Kurz, P.A., Kwak, S., Landreman, M., Lang, P., Lang, R., Langenberg, A., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., Lücke, A., Lumsdaine, A., Lutsenko, V., Maaßberg, H., Marchuk, O., Matthew, J.H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., Mönnich, T., Morisaki, T., Moseev, D., Murakami, S., Náfrádi, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Neuner, U., Ngo, T., Nicolai, D., Nielsen, S.K., Niemann, H., Nishizawa, T., Nocentini, R., Nührenberg, C., Nührenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., Ölmanns, J., Ongena, J., Oosterbeek, J.W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfuß, D., Paqay, S., Pasch, E., Pavone, A., Pawelec, E., Pedersen, T.S., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., Pölöskei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., Récsei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., Röhlinger, H., Romé, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., Sanchez, E., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schilling, J., Schlaich, A., Schlisio, G., Schluck, F., Schlüter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schröder, M., Schröder, T., Schroeder, R., Schumacher, H., Schweer, B., Scott, E., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipliä, S., Slaby, C., Sleczka, M., Smith, H., Spiess, W., Spong, D.A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Svensson, J., Szabó, V., Szabolics, T., Szepesi, T., Szökefalvi-Nagy, Z., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J.M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulipán, S., Unterberg, B., Vakulchyk, I., Valet, S., Vano, L., van Milligen, B., van Vuuren, A.J., Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Vorköper, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Warmer, F., Wauters, T., Wegener, L., Weggen, J., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wolf, R.C., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, D., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., and Zuin, M.
- Abstract
The optimized superconducting stellarator device Wendelstein 7-X (with major radius , minor radius , and plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of with central electron temperatures were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to were reached with hydrogen pellet injection and helium gas fueling. Here, the ions are indirectly heated, and at a central density of a temperature of with was transiently accomplished, which corresponds to with a peak diamagnetic energy of and volume-averaged normalized plasma pressure . The routine access to high plasma densities was opened with boronization of the first wall. After boronization, the oxygen impurity content was reduced by a factor of 10, the carbon impurity content by a factor of 5. The reduced (edge) plasma radiation level gives routinely access to higher densities without radiation collapse, e.g. well above line integrated density and central temperatures at moderate ECRH power. Both X2 and O2 mode ECRH schemes were successfully applied. Core turbulence was measured with a phase contrast imaging diagnostic and suppression of turbulence during pellet injection was observed.
- Published
- 2019
6. Challenges in the realization of the In-Vessel-Components of Wendelstein 7-X
- Author
-
D. Freier, H. Pirsch, A. Lorenz, J. Boscary, A.T. Peacock, R. Stadler, B. Mendelevitch, Ch. Li, and A. Vorköper
- Subjects
Computer science ,Mechanical Engineering ,media_common.quotation_subject ,Control (management) ,law.invention ,Variety (cybernetics) ,System requirements ,Project planning ,Nuclear Energy and Engineering ,law ,Systems engineering ,General Materials Science ,Wendelstein 7-X ,Function (engineering) ,Realization (systems) ,Stellarator ,Civil and Structural Engineering ,media_common - Abstract
The In-Vessel Components (IVC) for the Wendelstein 7-X stellarator at the Institute for Plasma-Physics (IPP), to be installed for the initial phase of operation, are nearing completion and a significant fraction of the components was delivered in 2011 and 2012. Due to the considerable amount of different components including many variants, the timely realization required a comprehensive management approach, not only covering the demanding technology and system requirements, but also coordination, planning and control issues. A variety of tools were set up to address the technical, financial and timescale challenges. The implementation of this comprehensive management approach is illustrated by the production of the water-cooling system of the IVC. Careful design and manufacture of these components is needed to fulfil the cooling function under high vacuum conditions within very restricted available space. The evolution of the complexity of these components together with changes of boundary conditions had to be managed, integrated into the overall project planning and adequately resourced.
- Published
- 2013
- Full Text
- View/download PDF
7. Design and technological solutions for the plasma facing components of WENDELSTEIN 7-X
- Author
-
F. Hurd, R. Stadler, B. Mendelevitch, J. Boscary, J. Tretter, A.T. Peacock, A. Cardella, H. Greuner, A. Vorköper, H. Pirsch, M. Smirnow, H. Tittes, and C. Li
- Subjects
Materials science ,Mechanical Engineering ,Divertor ,Nuclear engineering ,Pulse duration ,Plasma ,Protection system ,law.invention ,Coping (joinery) ,Nuclear Energy and Engineering ,law ,Water cooling ,General Materials Science ,Wendelstein 7-X ,Stellarator ,Civil and Structural Engineering - Abstract
The operation of W7-X stellarator for pulse length up to 30 min with 10 MW input power requires a full set of actively water-cooled plasma facing components. From the lower thermally loaded area of the wall protection system designed for an averaged load of 100 kW/m 2 to the higher loaded area of the divertor up to 10 MW/m 2 , various design and technological solutions have been developed meeting the high load requirements and coping with the restricted available space and the particular 3D-shaped geometry of the plasma vessel. 80 ports are dedicated alone to the water-cooling of plasma facing components and a complex networking of kilometers of pipework will be installed in the plasma vessel to connect all components to the cooling system. An advanced technology was developed in collaboration with industry for the target elements of the high heat flux (HHF) divertor, the so-called “bi-layer” technology for the bonding of flat tiles made from CFC NB31 onto the CuCrZr cooling structure. The design, R&D and the adopted technological solutions of plasma facing components are presented. At present, except the HHF divertor, most of plasma facing components has been already manufactured.
- Published
- 2011
- Full Text
- View/download PDF
8. Manufacturing of the Wendelstein 7-X divertor and wall protection
- Author
-
J. Kißlinger, M. Weißgerber, B. Mendelevitch, A. Vorköper, N. Rust, H. Greuner, J. Boscary, C. Li, B. Streibl, S. Schweizer, S. Benhard, P. Grigull, and T. Pirsch
- Subjects
Materials science ,Mechanical Engineering ,Nuclear engineering ,Divertor ,Baffle ,Fusion power ,law.invention ,Nuclear Energy and Engineering ,Heat flux ,law ,Heat shield ,Vacuum pump ,General Materials Science ,Wendelstein 7-X ,Stellarator ,Civil and Structural Engineering - Abstract
The in-vessel components of Wendelstein 7-X (W7-X) with a total surface of 265 m 2 comprise the divertor and the wall protection. The high heat flux (HHF) and lower heat flux (LHF) target, the baffle, the end plates closing the divertor chamber, a cryo vacuum pump (CVP) and a control coil form one divertor unit. Steel panels and the graphite heat shield protect the wall, including the ports. The HHF target elements, the steel panels and the control coils are manufactured by industry. The remaining components will be manufactured by the Max-Planck-Institute fur Plasmaphysik (IPP) at its Garching workshops. For all components the final acceptance tests will be performed by IPP. This paper summarizes the main aspects for manufacturing, the preceding development and qualification tests as well as the final acceptance tests for the in-vessel components.
- Published
- 2005
- Full Text
- View/download PDF
9. Lessons learned from the design and fabrication of the baffles and heat shields of Wendelstein 7-X
- Author
-
R. Stadler, B. Mendelevitch, J. Boscary, N. Dekorsy, A. Vorköper, A.T. Peacock, H. Tittes, Ch. Li, and O. Sellmeier
- Subjects
Materials science ,Piping ,Mechanical Engineering ,Divertor ,Nuclear engineering ,Baffle ,Welding ,Heat sink ,law.invention ,Nuclear Energy and Engineering ,law ,Heat shield ,General Materials Science ,Wendelstein 7-X ,Stellarator ,Civil and Structural Engineering - Abstract
The baffles and heat shields of the wall protection of the Wendelstein 7-X stellarator are actively water cooled components based on the same technology. Fine grain graphite tiles are clamped onto a CuCrZr heat sink, which is vacuum brazed to a stainless steel tube. The baffles are part of the divertor and improve the divertor pumping efficiency. The heat shields protect the plasma vessel wall, water piping, cables and the integrated diagnostics. The 170 baffles with 25 variants and 162 heat shield modules with 85 variants comprise a total surface of 33 m2 and 51 m2, respectively. Design guidelines enabled as much as possible the standardization of the fabrication to allow for a more efficient work organization. Individual jigs have been manufactured for each variant in order to weld, bend and mill the different parts of the baffles and heat shields to the required 3D accuracy. At the end of the manufacturing process, each component has been checked and documented according to a detailed quality plan.
- Published
- 2013
10. The procurement and testing of the stainless steel in-vessel panels of the Wendelstein 7-X Stellarator
- Author
-
F. Hurd, A. Girlinger, H. Greuner, R. Stadler, B. Mendelevitch, A. Vorköper, G. Zangl, J. Boscary, A.T. Peacock, and H. Pirsch
- Subjects
Materials science ,Mechanical Engineering ,Water cooled ,Nuclear engineering ,Plasma ,Welding ,law.invention ,Nuclear Energy and Engineering ,Closure (computer programming) ,law ,Steel plates ,General Materials Science ,Wendelstein 7-X ,High heat ,Stellarator ,Civil and Structural Engineering - Abstract
320 In-vessel water cooled stainless steel panels, poloidal closure plates and pumping gap panels, covering an area of approximately 100 m2, are used in Wendelstein7-X to protect the plasma vessel. The panels are manufactured at Deggendorf, Germany by MAN Diesel & Turbo SE. The panels consist of a laser welded sandwich of stainless steel plates together with a labyrinth of cooling channels and have a complicated geometry to fit the plasma vessel of Wendelstein 7-X. The hydraulic and mechanical stability requirements whilst maintaining the tight tolerances for the shape of the components are very demanding. The panels are designed to operate at up to an average heat load of 100 kW/m2 and a maximum heat load of 200 kW/m2 with a water velocity of approximately 2 m s−1. High heat flux testing of an un-cooled panel at a time averaged load of 200 kW/m2 for 10 s were successfully performed to support the start up phase of Wendelstein 7-X operation. Extensive testing both during manufacture and after delivery to IPP-Garching demonstrates the suitability of the delivered panels for their purpose.
- Published
- 2011
11. Design analysis and manufacturing of the cooling lines of the in vessel components of WENDELSTEIN 7-X
- Author
-
H. Tittes, H. Pirsch, R. Stadler, B. Mendelevitch, Ch. Li, F. Hurd, A.T. Peacock, A. Cardella, A. Vorköper, and J. Boscary
- Subjects
Cryostat ,Materials science ,Mechanical Engineering ,Mechanical engineering ,Torus ,Plasma ,Welding ,law.invention ,Cable gland ,Nuclear Energy and Engineering ,law ,General Materials Science ,Wendelstein 7-X ,Routing (electronic design automation) ,Civil and Structural Engineering ,Electronic circuit - Abstract
All in vessel components (IVCs) of W7-X are actively cooled. Inside the plasma vessel about 4 km of pipes will be installed, supplying water to the IVC. 226 cooling circuits with 78 variants are necessary. The cooling circuits enter the cryostat and the plasma vessel through ad hoc flanged penetrations called “plug-ins”, which provide for the vacuum boundary between the plasma chamber and the torus hall atmosphere. The plug-ins are installed inside the W7-X ports. Some of the plug-ins are also used for the diagnostic cables. In total eighty plug-ins will be produced and installed. The inlet/outlet cooling lines are connected to the plug-ins using a welded hydraulic connector. The layout of the cooling lines is rather complex in consideration of the limited space and the routing between many component parts. Additionally the differential thermal expansion of the lines with respect to the supporting structures during the different operation scenarios had to be compensated by ad hoc supports and adjustments in the flexibility of the lines.
- Published
- 2011
12. Engineering design for the magnetic diagnostics of Wendelstein 7-X
- Author
-
Endler, M., primary, Brucker, B., additional, Bykov, V., additional, Cardella, A., additional, Carls, A., additional, Dobmeier, F., additional, Dudek, A., additional, Fellinger, J., additional, Geiger, J., additional, Grosser, K., additional, Grulke, O., additional, Hartmann, D., additional, Hathiramani, D., additional, Höchel, K., additional, Köppen, M., additional, Laube, R., additional, Neuner, U., additional, Peng, X., additional, Rahbarnia, K., additional, Rummel, K., additional, Sieber, T., additional, Thiel, S., additional, Vorköper, A., additional, Werner, A., additional, Windisch, T., additional, and Ye, M.Y., additional
- Published
- 2015
- Full Text
- View/download PDF
13. The in-vessel components of the experiment Wendelstein 7-X
- Author
-
F. Hurd, R. Stadler, B. Mendelevitch, A. Cardella, J. Boscary, Ch. Li, A. Vorköper, H. Pirsch, and A.T. Peacock
- Subjects
Materials science ,Mechanical Engineering ,Divertor ,Nuclear engineering ,Baffle ,Injector ,law.invention ,Nuclear Energy and Engineering ,law ,Shielded cable ,Heat shield ,General Materials Science ,Wendelstein 7-X ,Stellarator ,Civil and Structural Engineering ,Electronic circuit - Abstract
The in-vessel components of the WENDELSTEIN 7-X stellarator consist of the divertor components and the wall protection with its internal cooling supply. The main components of the open divertor are the vertical and horizontal target plates which form the pumping gap, the cryo-vacuum pumps and the control coils. The divertor volume is closed by graphite shielded baffle modules and with divertor closures. All these components are designed to be actively water-cooled. For the first commissioning phase planned in 2014, an inertial-cooled test divertor will be installed instead of the actively water-cooled high heat flux divertor. The wall protection consists of graphite-protected heat shields in the higher loaded areas and stainless steel panels in the lower loaded regions. The wall protection cooling circuits are connected through 80 supply-ports via so-called “plug-ins”. It is envisaged to protect the diagnostic ports by panel-type port-liners. Special graphite-shielded port liners are used on the diagnostic injector and the neutral beam injector ports. The in-vessel components are mainly manufactured and tested at the Max-Planck-Institute fur Plasmaphysik in its Garching workshop. Panels, high heat flux target elements and control coils are delivered by industrial partners. Manufacturing of the KiP (“Komponenten im Plasmagefas”) is in plan. Delivery of the components will be in time.
- Published
- 2009
14. Lessons learned from the design and fabrication of the baffles and heat shields of Wendelstein 7-X
- Author
-
Mendelevitch, B., primary, Vorköper, A., additional, Boscary, J., additional, Li, Ch., additional, Dekorsy, N., additional, Peacock, A., additional, Sellmeier, O., additional, Stadler, R., additional, and Tittes, H., additional
- Published
- 2013
- Full Text
- View/download PDF
15. Challenges in the realization of the In-Vessel-Components of Wendelstein 7-X
- Author
-
Stadler, R., primary, Vorköper, A., additional, Boscary, J., additional, Li, Ch., additional, Mendelevitch, B., additional, Peacock, A., additional, Pirsch, H., additional, Freier, D., additional, and Lorenz, A., additional
- Published
- 2013
- Full Text
- View/download PDF
16. Design and technological solutions for the plasma facing components of WENDELSTEIN 7-X
- Author
-
Boscary, J., primary, Stadler, R., additional, Peacock, A., additional, Hurd, F., additional, Vorköper, A., additional, Mendelevitch, B., additional, Cardella, A., additional, Pirsch, H., additional, Tittes, H., additional, Tretter, J., additional, Li, C., additional, Greuner, H., additional, and Smirnow, M., additional
- Published
- 2011
- Full Text
- View/download PDF
17. The procurement and testing of the stainless steel in-vessel panels of the Wendelstein 7-X Stellarator
- Author
-
Peacock, A., primary, Girlinger, A., additional, Vorköper, A., additional, Boscary, J., additional, Greuner, H., additional, Hurd, F., additional, Mendelevitch, B., additional, Pirsch, H., additional, Stadler, R., additional, and Zangl, G., additional
- Published
- 2011
- Full Text
- View/download PDF
18. Design analysis and manufacturing of the cooling lines of the in vessel components of WENDELSTEIN 7-X
- Author
-
Mendelevitch, B., primary, Vorköper, A., additional, Boscary, J., additional, Cardella, A., additional, Hurd, F., additional, Li, Ch., additional, Peacock, A., additional, Pirsch, H., additional, Stadler, R., additional, and Tittes, H., additional
- Published
- 2011
- Full Text
- View/download PDF
19. The in-vessel components of the experiment WENDELSTEIN 7-X
- Author
-
Stadler, R., primary, Vorköper, A., additional, Boscary, J., additional, Cardella, A., additional, Hurd, F., additional, Li, Ch., additional, Mendelevitch, B., additional, Peacock, A., additional, and Pirsch, H., additional
- Published
- 2009
- Full Text
- View/download PDF
20. Manufacturing of the Wendelstein 7-X divertor and wall protection
- Author
-
Benhard, S., primary, Boscary, J., additional, Greuner, H., additional, Grigull, P., additional, Kißlinger, J., additional, Li, C., additional, Mendelevitch, B., additional, Pirsch, T., additional, Rust, N., additional, Schweizer, S., additional, Vorköper, A., additional, and Weißgerber, M., additional
- Published
- 2005
- Full Text
- View/download PDF
21. Sensitivity study of the SX tomography system on Wendelstein 7-X
- Author
-
Thomsen, H., Bergmann, T., Biedermann, C., Andreas Dinklage, König, R., Li, D., Marquardt, M., Meisel, F., Sachtleben, J., Schülke, M., Sieber, T., Svensson, J., Vorköper, A., Weißflog, S., Weller, A., Zacharias, D., and Zhang, D.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.