Ali Piri, Sepide Saeedi, Mario Barbareschi, Bastien Deveautour, Stefano Di Carlo, Ian O'Connor, Alessandro Savino, Marcello Traiola, Alberto Bosio, Piri, A., Saeedi, S., Barbareschi, M., Deveautour, B., Carlo, S. D., O'Connor, I., Savino, A., Traiola, M., Bosio, A., INL - Conception de Systèmes Hétérogènes (INL - CSH), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Politecnico di Torino = Polytechnic of Turin (Polito), University of Naples Federico II = Università degli studi di Napoli Federico II, Architectures matérielles spécialisées pour l’ère post loi-de-Moore (TARAN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
International audience; In the last decade, Approximate Computing (AxC) has been extensively employed to improve the energy efficiency of computing systems, at different abstraction levels. The main AxC goal is reducing the energy budget used to execute errortolerant applications, at the cost of a controlled and intrinsicallytolerable quality degradation. An important amount of work has been done in proposing approximate versions of basic operations, using fewer resources. From a hardware standpoint, several approximate arithmetic operations have been proposed. Although effective, such approximate hardware operators are not tailored to a specific final application. Thus, their effectiveness will depend on the actual application using them. Taking into account the target application and the related input data distribution, the final energy efficiency can be pushed further. In this paper we showcase the advantage of considering the data distribution by designing an input-aware approximate multiplier specifically intended for a high pass FIR filter, where the input distribution pattern for one operand is not uniform. Experimental results show that we can significantly reduce the power consumption while keeping an error rate lower than state of the art approximate multipliers.