304 results on '"Sciare J"'
Search Results
2. Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe
- Author
-
Kaskaoutis, D.G., Grivas, G., Oikonomou, K., Tavernaraki, P., Papoutsidaki, K., Tsagkaraki, M., Stavroulas, I., Zarmpas, P., Paraskevopoulou, D., Bougiatioti, A., Liakakou, E., Gavrouzou, M., Dumka, U.C., Hatzianastassiou, N., Sciare, J., Gerasopoulos, E., and Mihalopoulos, N.
- Published
- 2022
- Full Text
- View/download PDF
3. A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
- Author
-
Bressi, M., Cavalli, F., Putaud, J.P., Fröhlich, R., Petit, J.-E., Aas, W., Äijälä, M., Alastuey, A., Allan, J.D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N., Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., Graf, P., Green, D.C., Heikkinen, L., Hermann, H., Holzinger, R., Hueglin, C., Keernik, H., Kiendler-Scharr, A., Kubelová, L., Lunder, C., Maasikmets, M., Makeš, O., Malaguti, A., Mihalopoulos, N., Nicolas, J.B., O'Dowd, C., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Schlag, P., Schwarz, J., Sciare, J., Slowik, J., Sosedova, Y., Stavroulas, I., Teinemaa, E., Via, M., Vodička, P., Williams, P.I., Wiedensohler, A., Young, D.E., Zhang, S., Favez, O., Minguillón, M.C., and Prevot, A.S.H.
- Published
- 2021
- Full Text
- View/download PDF
4. Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece
- Author
-
Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas, G., Paraskevopoulou, D., Dumka, U.C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E., and Mihalopoulos, N.
- Published
- 2020
- Full Text
- View/download PDF
5. Contribution of black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula
- Author
-
Mahfouz, M. M. K., Skok, G., Sciare, J., Pikridas, M., Rami Alfarra, M., Moosakutty, S., Alfoldy, B., Ivančič, M., Rigler, M., Gregorič, A., Podlipec, R., Lohmann, S., (0000-0001-7192-716X) Hlawacek, G., Heller, R., Tutsak, E., Močnik, G., Mahfouz, M. M. K., Skok, G., Sciare, J., Pikridas, M., Rami Alfarra, M., Moosakutty, S., Alfoldy, B., Ivančič, M., Rigler, M., Gregorič, A., Podlipec, R., Lohmann, S., (0000-0001-7192-716X) Hlawacek, G., Heller, R., Tutsak, E., and Močnik, G.
- Abstract
Discriminating the absorption coefficients of aerosol mineral dust and black carbon (BC) in different aerosol size fractions is a challenge because of BC's large mass absorption cross-section compared to dust. Ambient aerosol wavelength dependent absorption coefficients in supermicron and submicron size fractions were determined with a high time resolution. The measurements were performed simultaneously using identical systems at an urban and a regional background site in Qatar. At each site, measurements were taken by co-located Aethalometers, one with a virtual impactor (VI) and the other with a PM1 cyclone to respectively collect super-micron-enhanced and submicron fractions. The combined measurement of aerosol absorption and scattering coefficients enabled the particles to be classified based on their optical properties' wavelength dependence. The classification reveals the presence of BC internally/externally mixed with different aerosols. Helium ion microscopy images provided information concerning the extent of mineral dust in the submicron fraction. The determination of absorption coefficients during dust storms and non-dust periods was used to establish the absorption Ångström exponent for dust and BC. Non-parametric wind regression, potential source contribution function and back-trajectory analysis reveal major regional sources of desert dust associated with north-westerly winds and a minor local dust contribution. In contrast, major BC sources found locally were associated with south-westerly winds with a smaller contribution made by offshore emissions transported by north-easterly and easterly winds. The use of a pair of Aethalometers with VI and PM1 inlets separates contributions of BC and dust to the aerosol absorption coefficient.
- Published
- 2024
6. Source apportionment of fine PM by combining high time resolution organic and inorganic chemical composition datasets
- Author
-
Belis, C.A., Pikridas, M., Lucarelli, F., Petralia, E., Cavalli, F., Calzolai, G., Berico, M., and Sciare, J.
- Published
- 2019
- Full Text
- View/download PDF
7. Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus
- Author
-
Pikridas, M., Vrekoussis, M., Sciare, J., Kleanthous, S., Vasiliadou, E., Kizas, C., Savvides, C., and Mihalopoulos, N.
- Published
- 2018
- Full Text
- View/download PDF
8. The AeroCom evaluation and intercomparison of organic aerosol in global models
- Author
-
Tsigaridis, K, Daskalakis, N, Kanakidou, M, Adams, PJ, Artaxo, P, Bahadur, R, Balkanski, Y, Bauer, SE, Bellouin, N, Benedetti, A, Bergman, T, Berntsen, TK, Beukes, JP, Bian, H, Carslaw, KS, Chin, M, Curci, G, Diehl, T, Easter, RC, Ghan, SJ, Gong, SL, Hodzic, A, Hoyle, CR, Iversen, T, Jathar, S, Jimenez, JL, Kaiser, JW, Kirkevåg, A, Koch, D, Kokkola, H, Lee, YH, Lin, G, Liu, X, Luo, G, Ma, X, Mann, GW, Mihalopoulos, N, Morcrette, J-J, Müller, J-F, Myhre, G, Myriokefalitakis, S, Ng, NL, O'Donnell, D, Penner, JE, Pozzoli, L, Pringle, KJ, Russell, LM, Schulz, M, Sciare, J, Seland, Ø, Shindell, DT, Sillman, S, Skeie, RB, Spracklen, D, Stavrakou, T, Steenrod, SD, Takemura, T, Tiitta, P, Tilmes, S, Tost, H, van Noije, T, van Zyl, PG, von Salzen, K, Yu, F, Wang, Z, Zaveri, RA, Zhang, H, Zhang, K, Zhang, Q, and Zhang, X
- Subjects
Aging ,Climate Action ,Astronomical and Space Sciences ,Atmospheric Sciences ,Meteorology & Atmospheric Sciences - Abstract
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a-1 (range 34-144 Tg a-1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a-1 (range 28-209 Tg a-1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model-observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model-measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to -0.62 (-0.51) based on the comparison against OC (OA) urban data of all models at the surface, -0.15 (+0.51) when compared with remote measurements, and -0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
- Published
- 2014
9. Global Air Pollution Crossroads over the Mediterranean
- Author
-
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.
- Published
- 2002
10. Spatial and Temporal Variability of Dissolved Sulfur Compounds in European Estuaries
- Author
-
Sciare, J., Mihalopoulos, N., and Nguyen, B. C.
- Published
- 2002
11. Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation
- Author
-
Petit, J.-E., Amodeo, T., Meleux, F., Bessagnet, B., Menut, L., Grenier, D., Pellan, Y., Ockler, A., Rocq, B., Gros, V., Sciare, J., and Favez, O.
- Published
- 2017
- Full Text
- View/download PDF
12. Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime
- Author
-
Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P., Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K., Bougiatioti, A., Gerasopoulos, E., Sarda-Estève, R., Bonnaire, N., and Mihalopoulos, N.
- Published
- 2017
- Full Text
- View/download PDF
13. Role of the boundary layer dynamics effects on an extreme air pollution event in Paris
- Author
-
Dupont, J.-C., Haeffelin, M., Badosa, J., Elias, T., Favez, O., Petit, J.E., Meleux, F., Sciare, J., Crenn, V., and Bonne, J.L.
- Published
- 2016
- Full Text
- View/download PDF
14. Traffic induced particle resuspension in Paris: Emission factors and source contributions
- Author
-
Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J.A.G., Bonnaire, N., Le Priol, T., Petit, J.-F., and Sciare, J.
- Published
- 2016
- Full Text
- View/download PDF
15. A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises
- Author
-
Belis, C.A., Karagulian, F., Amato, F., Almeida, M., Artaxo, P., Beddows, D.C.S., Bernardoni, V., Bove, M.C., Carbone, S., Cesari, D., Contini, D., Cuccia, E., Diapouli, E., Eleftheriadis, K., Favez, O., El Haddad, I., Harrison, R.M., Hellebust, S., Hovorka, J., Jang, E., Jorquera, H., Kammermeier, T., Karl, M., Lucarelli, F., Mooibroek, D., Nava, S., Nøjgaard, J.K., Paatero, P., Pandolfi, M., Perrone, M.G., Petit, J.E., Pietrodangelo, A., Pokorná, P., Prati, P., Prevot, A.S.H., Quass, U., Querol, X., Saraga, D., Sciare, J., Sfetsos, A., Valli, G., Vecchi, R., Vestenius, M., Yubero, E., and Hopke, P.K.
- Published
- 2015
- Full Text
- View/download PDF
16. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East
- Author
-
Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., Fnais, M., Francis, D., Hadjinicolaou, P., Howari, F., Jrrar, A., Kaskaoutis, D. G., Kulmala, M., Lazoglou, G., Mihalopoulos, N., Lin, X., Rudich, Y., Sciare, J., Stenchikov, G., Xoplaki, E., Lelieveld, J., and Institute for Atmospheric and Earth System Research (INAR)
- Subjects
114 Physical sciences - Abstract
Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45 degrees C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
- Published
- 2022
17. PARISFOG : Shedding New Light on Fog Physical Processes
- Author
-
Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., Colomb, M., Drobinski, P., Dupont, E., Dupont, J.-C., Gomes, L., Musson-Genon, L., Pietras, C., Plana-Fattori, A., Protat, A., Rangognio, J., Raut, J.-C., Rémy, S., Richard, D., Sciare, J., and Zhang, X.
- Published
- 2010
18. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment
- Author
-
Vignati, E., Facchini, M.C., Rinaldi, M., Scannell, C., Ceburnis, D., Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., and O'Dowd, C.D.
- Published
- 2010
- Full Text
- View/download PDF
19. Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM)
- Author
-
Sciare, J., Sarda-Estève, R., Favez, O., Cachier, H., Aymoz, G., and Laj, P.
- Published
- 2008
- Full Text
- View/download PDF
20. Origin of black carbon concentration peaks in Cairo (Egypt)
- Author
-
Mahmoud, K.F., Alfaro, S.C., Favez, O., Abdel Wahab, M.M., and Sciare, J.
- Published
- 2008
- Full Text
- View/download PDF
21. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments
- Author
-
Lelieveld, J., Helleis, F., Borrmann, S., Cheng, Y., Drewnick, F., Haug, G., Klimach, T., Sciare, J., Su, H., and Pöschl, U.
- Subjects
complex mixtures - Abstract
The role of aerosolized SARS-CoV-2 viruses in airborne transmission of COVID-19 is debated. The transmitting aerosol particles are generated through the breathing and vocalization by infectious subjects. Some authors state that this represents the dominant route of spreading, while others dismiss the option. Public health organizations generally categorize it as a secondary transmission pathway. Here we present a simple, easy-to-use spreadsheet model to estimate the infection risk for different indoor environments, constrained by published data on human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters. We evaluate typical indoor settings such as an office, a classroom, a choir practice room and reception/party environments. These are examples, and the reader is invited to use the algorithm for alternative situations and assumptions. Our results suggest that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments. This “highly infective” category represents approximately twenty percent of the patients tested positive for SARS-CoV-2. We find that “super infective” subjects, representing the top five to ten percent of positive-tested ones, plus an unknown fraction of less, but still highly infective, high aerosol-emitting subjects, may cause COVID-19 clusters (>10 infections), e.g. in classrooms, during choir singing and at receptions. The highly infective ones also risk causing such events at parties, for example. In general, active room ventilation and the ubiquitous wearing of face masks (i.e. by all subjects) may reduce the individual infection risk by a factor of five to ten, similar to high-volume HEPA air filtering. The most effective mitigation measure studied is the use of high-quality masks, which can drastically reduce the indoor infection risk through aerosols., medRxiv
- Published
- 2020
22. A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
- Author
-
Sub Atmospheric physics and chemistry, Energy, Resources & Technological Change, Marine and Atmospheric Research, Bressi, M., Cavalli, F., Putaud, J.P., Fröhlich, R., Petit, J.-E., Aas, W., Äijälä, M., Alastuey, A., Allan, J.D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N., Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., Graf, P., Green, D.C., Heikkinen, L., Hermann, H., Holzinger, R., Hueglin, C., Keernik, H., Kiendler-Scharr, A., Kubelová, L., Lunder, C., Maasikmets, M., Makeš, O., Malaguti, A., Mihalopoulos, N., Nicolas, J.B., O'Dowd, C., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Schlag, P., Schwarz, J., Sciare, J., Slowik, J., Sosedova, Y., Stavroulas, I., Teinemaa, E., Via, M., Vodička, P., Williams, P.I., Wiedensohler, A., Young, D.E., Zhang, S., Favez, O., Minguillón, M.C., Prevot, A.S.H., Sub Atmospheric physics and chemistry, Energy, Resources & Technological Change, Marine and Atmospheric Research, Bressi, M., Cavalli, F., Putaud, J.P., Fröhlich, R., Petit, J.-E., Aas, W., Äijälä, M., Alastuey, A., Allan, J.D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N., Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., Graf, P., Green, D.C., Heikkinen, L., Hermann, H., Holzinger, R., Hueglin, C., Keernik, H., Kiendler-Scharr, A., Kubelová, L., Lunder, C., Maasikmets, M., Makeš, O., Malaguti, A., Mihalopoulos, N., Nicolas, J.B., O'Dowd, C., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Schlag, P., Schwarz, J., Sciare, J., Slowik, J., Sosedova, Y., Stavroulas, I., Teinemaa, E., Via, M., Vodička, P., Williams, P.I., Wiedensohler, A., Young, D.E., Zhang, S., Favez, O., Minguillón, M.C., and Prevot, A.S.H.
- Published
- 2021
23. Determination of high-time resolution mineral dust concentration in real-time by optical absorption measurements
- Author
-
Ivančič, M., Ježek, I., Rigler, M., Gregorič, A., Alföldy, B., (0000-0001-8584-3274) Podlipec, R., Drinovec, L., Pikridas, M., Unga, F., Sciare, J., Yus-Díez, J., Pandolfi, M., Griša, M., Ivančič, M., Ježek, I., Rigler, M., Gregorič, A., Alföldy, B., (0000-0001-8584-3274) Podlipec, R., Drinovec, L., Pikridas, M., Unga, F., Sciare, J., Yus-Díez, J., Pandolfi, M., and Griša, M.
- Abstract
Mineral dust is an important natural source of aerosols and significantly influences air quality (Querol et al., Environ. Int., 2019) and the global radiation budget (Schepanski, Geosci., 2018). Frequent dust intrusions are observed in the Mediterranean region (Ealo et al., Atmos. Chem. Phys., 2016; Pikridas et al., Atmos. Environ., 2018) and Central Europe (Collaud Coen et al., Atmos. Chem. Phys., 2004; Schauer et al., Aerosol Air Qual. Res., 2016), with high potential to cause exceedances of daily PM10 levels. To separate the influence of anthropogenic and natural contribution to the PM10 levels, the new method was developed within the DNAAP project (Detection of non-anthropogenic air pollution – http://www.aerosol.si/dnaap/). Dust weakly absorbs light in the near ultra-violet and short wavelengths of the visible range, while the light absorption of dust in longer wavelengths from the visible and near infra-red range is negligible. We used filter-based photometer Aethalometer AE33 (Drinovec et al., Atmos. Meas. Tech., 2015) to measure the light absorption at seven wavelengths, from 370 to 950 nm. The mineral dust is not the only light-absorbing aerosol in the air. Black carbon (BC), a unique primary tracer for combustion emissions, strongly absorbs light across the entire visual, near infra-red and near ultra-violet spectral range. Since optical absorption of mineral dust is weaker than the optical absorption of black carbon, the coarse mode mineral particles have to be concentrated using the high-volume virtual impactor (VI). The method is based on the optical absorption measurements of the two sample streams, sampling particle size below 1 µm and sample stream with the concentrated coarse mode particles, where mineral dust contribution is substantial. Experimental configuration includes two Aethalometers AE33 with different size selective inlets: VI inlet for sampling coarse aerosol mode (mostly mineral dust) and PM1 inlet for sampling fine mode of aerosols (mai
- Published
- 2021
24. Formation of particulate sulfur species (sulfate and methanesulfonate) during summer over the Eastern Mediterranean: A modelling approach
- Author
-
Mihalopoulos, N., Kerminen, V.M., Kanakidou, M., Berresheim, H., and Sciare, J.
- Published
- 2007
- Full Text
- View/download PDF
25. Spatial, Temporal and Interannual Variability of Methanesulfonate and Non-Sea-Salt Sulfate in Rainwater in the Southern Indian Ocean (Amsterdam, Crozet and Kerguelen Islands)
- Author
-
Baboukas, E., Sciare, J., and Mihalopoulos, N.
- Published
- 2004
- Full Text
- View/download PDF
26. Short-Term Variability of Atmospheric DMS and Its Oxidation Products at Amsterdam Island during Summer Time
- Author
-
Sciare, J., Baboukas, E., and Mihalopoulos, N.
- Published
- 2001
- Full Text
- View/download PDF
27. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations
- Author
-
Mallet, M, Dubovik, O, Nabat, P, Dulac, F, Kahn, R, Sciare, J, Paronis, D, and Leon, J. F
- Subjects
Meteorology And Climatology ,Earth Resources And Remote Sensing - Abstract
Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to approximately 0.94-0.95 +/- 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA approximately 0.89-0.90 +/- 0.04). The aerosol Absorption Angstrom Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East-West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. A~comparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA approximately 0.90 at 470-500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East-West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).
- Published
- 2013
- Full Text
- View/download PDF
28. Qualification of the Alphasense optical particle counter for inline air quality monitoring
- Author
-
Bezantakos, S., primary, Costi, M., additional, Barmpounis, K., additional, Antoniou, P., additional, Vouterakos, P., additional, Keleshis, C., additional, Sciare, J., additional, and Biskos, G., additional
- Published
- 2021
- Full Text
- View/download PDF
29. Summertime Seawater Concentrations of Dimethylsulfide in the Western Indian Ocean: Reconciliation of Fluxes and Spatial Variability with Long-Term Atmospheric Observations
- Author
-
Sciare, J., Mihalopoulos, N., and Nguyen, B. C.
- Published
- 1999
- Full Text
- View/download PDF
30. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network
- Author
-
Smirnov, A, Sayer, A. M, Holben, B. N, Hsu, N. C, Sakerin, S. M, Macke, A, Nelson, N. B, Courcoux, Y, Smyth, T. J, Croot, P, Quinn, P. K, Sciare, J, Gulev, S. K, Piketh, S, Losno, R, Kinne, S, and Radionov, V. F
- Subjects
Geophysics - Abstract
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
- Published
- 2012
- Full Text
- View/download PDF
31. Seasonal Variation of Dimethylsulfoxide in Rainwater at Amsterdam Island in the Southern Indian Ocean: Implications on the Biogenic Sulfur Cycle
- Author
-
Sciare, J., Baboukas, E., Hancy, R., Mihalopoulos, N., and Nguyen, B. C.
- Published
- 1998
- Full Text
- View/download PDF
32. Seasonal variability of optical properties of aerosols in the Eastern Mediterranean
- Author
-
Vrekoussis, M., Liakakou, E., Koçak, M., Kubilay, N., Oikonomou, K., Sciare, J., and Mihalopoulos, N.
- Published
- 2005
- Full Text
- View/download PDF
33. WITHDRAWN: Source apportionment of fine PM by combining high time resolution organic and inorganic chemical composition datasets
- Author
-
Belis, C.A., Pikridas, M., Lucarelli, F., Petralia, E., Cavalli, F., Calzolai, G., Berico, M., and Sciare, J.
- Published
- 2019
- Full Text
- View/download PDF
34. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter
- Author
-
Bardouki, H, Liakakou, H, Economou, C, Sciare, J, Smolı́k, J, Ždı́mal, V, Eleftheriadis, K, Lazaridis, M, Dye, C, and Mihalopoulos, N
- Published
- 2003
- Full Text
- View/download PDF
35. Corrigendum to 'A novel model evaluation approach focusing on local and advected contributions to urban PM2.5 levels – application to Paris, France' published in Geosci. Model Dev., 7, 1483–1505, 2014
- Author
-
Petetin, H., Beekmann, M., Sciare, J., Bressi, M., Rosso, A., Sanchez, O., Ghersi, V., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:Geology ,[SDU]Sciences of the Universe [physics] ,lcsh:QE1-996.5 - Abstract
International audience; No abstract available.
- Published
- 2018
- Full Text
- View/download PDF
36. Interannual variability of methanesulfonate in rainwater at Amsterdam Island (Southern Indian Ocean)
- Author
-
Baboukas, E, Sciare, J, and Mihalopoulos, N
- Published
- 2002
- Full Text
- View/download PDF
37. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements
- Author
-
Petetin, H., Beekmann, M., Colomb, A., Denier van der Gon, A., Dupont, J., Honore, C., Michoud, V., Morille, Y., Perrussel, O., Schwarzenboeck, Alfons, Sciare, J., Wiedensohler, A., Zhang, Q., Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de météorologie physique (LaMP), Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), AIRPARIF - Surveillance de la qualité de l'air en Île-de-France, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Chimie Atmosphérique Expérimentale (CAE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Leibniz Institute for Tropospheric Research (TROPOS), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,lcsh:Chemistry ,lcsh:QD1-999 ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,lcsh:Physics ,lcsh:QC1-999 - Abstract
High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.
- Published
- 2015
- Full Text
- View/download PDF
38. A new technique for sampling and analysis of atmospheric dimethylsulfoxide (DMSO)
- Author
-
Sciare, J and Mihalopoulos, N
- Published
- 2000
- Full Text
- View/download PDF
39. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution
- Author
-
Freutel, Friederike, Schneider, Jodi, Drewnick, F., von Der Weiden-Reinmüller, S.-L., Crippa, Monica, Prévôt, A.S.H., Baltensperger, Urs, Poulain, L., Wiedensohler, A., Sciare, J., Sarda-Estève, R., Burkhart, J.F., Eckhardt, S., Stohl, A., Gros, Valérie, Colomb, Aurélie, Michoud, Vincent, Doussin, J.F., Borbon, Agnès, Haeffelin, M., Morille, Y., Beekmann, Matthias, Borrmann, S., Max Planck Institute for Chemistry (MPIC), Max-Planck-Gesellschaft, Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Paul Scherrer Institute (PSI), Leibniz Institute for Tropospheric Research (TROPOS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Norwegian Institute for Air Research (NILU), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de météorologie physique (LaMP), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Site Instrumental de Recherche Par Télédétection Atmosphérique, Palaiseau, France, Institute for Atmospheric Physics [Mainz] (IPA), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Johannes Gutenberg - Universität Mainz (JGU), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), and Johannes Gutenberg - University of Mainz (JGU)
- Subjects
lcsh:Chemistry ,010504 meteorology & atmospheric sciences ,lcsh:QD1-999 ,13. Climate action ,010501 environmental sciences ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,01 natural sciences ,lcsh:Physics ,lcsh:QC1-999 ,0105 earth and related environmental sciences - Abstract
During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively) were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively). For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be inferred from these measurements: Volume mixing ratios of 1–14 ppb of NOx, and upper limits for mass concentrations of about 1.5 μg m−3 of black carbon and of about 3 μg m−3 of hydrocarbon-like organic aerosol can be deduced which originate from both, local emissions and the overall Paris emission plume. The secondary aerosol particle phase species were found to be not significantly influenced by the Paris megacity, indicating their regional origin. The submicron aerosol mass concentrations of particulate sulphate, nitrate, and ammonium measured during time periods when air masses were advected from eastern central Europe were found to be similar to what has been found from other measurement campaigns in Paris and south-central France for this type of air mass origin, indicating that the results presented here are also more generally valid.
- Published
- 2013
- Full Text
- View/download PDF
40. Aerosol chemistry above an extended archipelago of the eastern Mediterranean basin during strong northern winds
- Author
-
Athanasopoulou, E. Protonotariou, A.P. Bossioli, E. Dandou, A. Tombrou, M. Allan, J.D. Coe, H. Mihalopoulos, N. Kalogiros, J. Bacak, A. Sciare, J. Biskos, G.
- Abstract
Detailed aerosol chemical predictions by a comprehensive model system (i.e. PMCAMx, WRF, GEOS-CHEM), along with airborne and ground-based observations, are presented and analysed over a wide domain covering the Aegean Archipelago. The studied period is 10 successive days in 2011, characterized by strong northern winds, which is the most frequently prevailing synoptic pattern during summer. The submicron aerosol load in the lower troposphere above the archipelago is homogenously enriched in sulfate (average modelled and measured submicron sulfate of 5.5 and 5.8 μg m-3, respectively), followed by organics (2.3 and 4.4 μg m-3) and ammonium (1.5 and 1.7 μg m-3). Aerosol concentrations smoothly decline aloft, reaching lower values (< 1 μg m-3) above 4.2 km altitude. The evaluation criteria rate the model results for sulfate, ammonium, chloride, elemental carbon, organic carbon and total PM10 mass concentrations as "good", indicating a satisfactory representation of the aerosol chemistry and precursors. Higher model discrepancies are confined to the highest (e.g. peak sulfate values) and lowest ends (e.g. nitrate) of the airborne aerosol mass size distribution, as well as in airborne organic aerosol concentrations (model underestimation ca. 50 %). The latter is most likely related to the intense fire activity at the eastern Balkan area and the Black Sea coastline, which is not represented in the current model application. The investigation of the effect of local variables on model performance revealed that the best agreement between predictions and observations occurs during high winds from the northeast, as well as for the area confined above the archipelago and up to 2.2 km altitude. The atmospheric ageing of biogenic particles is suggested to be activated in the aerosol chemistry module, when treating organics in a sufficient nitrogen and sulfate-rich environment, such as that over the Aegean basin. More than 70 % of the predicted aerosol mass over the Aegean Archipelago during a representative Etesian episode is related to transport of aerosols and their precursors from outside the modelling domain. © Author(s) 2015.
- Published
- 2015
41. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples
- Author
-
Yttri, K., Schnelle-Kreis, J., Maenhaut, W., Abbaszade, G., Alves, C., Bjerke, A., Bonnier, N., Bossi, R., Claeys, M., Dye, C., Evtyugina, M., García-Gacio, D., Hillamo, R., Hoffer, A., Hyder, M., Iinuma, Y., Jaffrezo, J., Kasper-Giebl, A., Kiss, G., López-Mahia, P., Pio, C., Piot, C., Ramirez-Santa-Cruz, C., Sciare, J., Teinilä, K., Vermeylen, R., Vicente, A., Zimmermann, R., Norwegian Institute for Air Research (NILU), Helmholtz-Zentrum München (HZM), Universiteit Gent = Ghent University [Belgium] (UGENT), CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Department of Environmental Science, Aarhus University, Aarhus University [Aarhus], Laboratoire de l'Atmosphère et des Cyclones (LACy), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institute for Chemical Technologies and Analytics, Vienna University of Technology (TU Wien), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Moléculaire et Environnement (LCME), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Chimie Atmosphérique Expérimentale (CAE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Finnish Meteorological Institute (FMI), Department of Pharmaceutical Sciences, University of Antwerp (UA), Aptel, Florence, Helmholtz Zentrum München = German Research Center for Environmental Health, Universiteit Gent = Ghent University (UGENT), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent [Ghent], University of Aveiro, Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Technical University of Vienna [Vienna] (TU WIEN), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Grenoble Alpes (UGA), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Institute for Nuclear Sciences, Ghent University [Belgium] ( UGENT ), Norwegian Institute for Air Research ( NILU ), Laboratoire de l'Atmosphère et des Cyclones ( LACy ), Météo France-Université de la Réunion ( UR ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Environment and Planning, Department of Earth and Environmental Sciences, Technical University of Vienna [Vienna] ( TU WIEN ), Institut de Génomique Fonctionnelle ( IGF ), Centre National de la Recherche Scientifique ( CNRS ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Montpellier 1 ( UM1 ) -Université de Montpellier ( UM ), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] ( LSCE ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Finnish Meteorological Institute ( FMI ), University of Antwerp ( UA ), Laboratoire catalyse et spectrochimie ( LCS ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Ecole Nationale Supérieure d'Ingénieurs de Caen ( ENSICAEN ), Normandie Université ( NU ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[CHIM.ANAL] Chemical Sciences/Analytical chemistry ,lcsh:TA715-787 ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Physics ,ATMOSPHERIC PARTICULATE MATTER ,lcsh:Earthwork. Foundations ,FINE-PARTICLE EMISSIONS ,PERFORMANCE LIQUID-CHROMATOGRAPHY ,MONOSACCHARIDE ANHYDRIDES ,lcsh:Environmental engineering ,POLAR ORGANIC-COMPOUNDS ,Chemistry ,PULSED-AMPEROMETRIC DETECTION ,ANION-EXCHANGE CHROMATOGRAPHY ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,MASS SIZE DISTRIBUTION ,[ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment ,CHEMICAL-CHARACTERIZATION ,[SDE.IE] Environmental Sciences/Environmental Engineering ,LONG-RANGE TRANSPORT ,lcsh:TA170-171 ,ComputingMilieux_MISCELLANEOUS - Abstract
The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from −63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was −60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from −84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.
- Published
- 2015
- Full Text
- View/download PDF
42. Overview of the Chemistry-Aerosol Mediterranean Experiment/aerosol direct radiative forcing on the Mediterranean climate (ChArMEx/ADRIMED) summer 2013 campaign
- Author
-
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció, Mallet, Marc, Dulac, F, Formenti, P, Nabat, Pierre, Sciare, J., Roberts, Gareth E., Pelon, Jacques, Ancellet, Gerard, Tanré, Didier, Parol, F, Dejean, C., Brogniez, G., di Sarra, G, Alados Arboledas, Lucas, Arndt, Dorthe, Auriol, F., Blarel, L., Bourrianne, T., Chazette, P, Chevaillier, S., Claeys, Maxim, D'Anna, B., Derimian, Y., Desboeufs, K., Di Iorio, Tatiana, Doussin, J.F., Durand, Pierre, Feron, A., Franay, E., Gaimoz, C., Goloub, Philppe, Gomez Amo, J.L., Granados Muñoz, María José, Sicard, Michaël, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció, Mallet, Marc, Dulac, F, Formenti, P, Nabat, Pierre, Sciare, J., Roberts, Gareth E., Pelon, Jacques, Ancellet, Gerard, Tanré, Didier, Parol, F, Dejean, C., Brogniez, G., di Sarra, G, Alados Arboledas, Lucas, Arndt, Dorthe, Auriol, F., Blarel, L., Bourrianne, T., Chazette, P, Chevaillier, S., Claeys, Maxim, D'Anna, B., Derimian, Y., Desboeufs, K., Di Iorio, Tatiana, Doussin, J.F., Durand, Pierre, Feron, A., Franay, E., Gaimoz, C., Goloub, Philppe, Gomez Amo, J.L., Granados Muñoz, María José, and Sicard, Michaël
- Abstract
The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning ev, Peer Reviewed, Postprint (published version)
- Published
- 2016
43. New Directions: The future of European urban air quality monitoring
- Author
-
Kuhlbusch, T.A.J. Quincey, P. Fuller, G.W. Kelly, F. Mudway, I. Viana, M. Querol, X. Alastuey, A. Katsouyanni, K. Weijers, E. Borowiak, A. Gehrig, R. Hueglin, C. Bruckmann, P. Favez, O. Sciare, J. Hoffmann, B. EspenYttri, K. Torseth, K. Sager, U. Asbach, C. Quass, U.
- Published
- 2014
44. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign
- Author
-
Mallet, M., primary, Dulac, F., additional, Formenti, P., additional, Nabat, P., additional, Sciare, J., additional, Roberts, G., additional, Pelon, J., additional, Ancellet, G., additional, Tanré, D., additional, Parol, F., additional, Denjean, C., additional, Brogniez, G., additional, di Sarra, A., additional, Alados-Arboledas, L., additional, Arndt, J., additional, Auriol, F., additional, Blarel, L., additional, Bourrianne, T., additional, Chazette, P., additional, Chevaillier, S., additional, Claeys, M., additional, D'Anna, B., additional, Derimian, Y., additional, Desboeufs, K., additional, Di Iorio, T., additional, Doussin, J.-F., additional, Durand, P., additional, Féron, A., additional, Freney, E., additional, Gaimoz, C., additional, Goloub, P., additional, Gómez-Amo, J. L., additional, Granados-Muñoz, M. J., additional, Grand, N., additional, Hamonou, E., additional, Jankowiak, I., additional, Jeannot, M., additional, Léon, J.-F., additional, Maillé, M., additional, Mailler, S., additional, Meloni, D., additional, Menut, L., additional, Momboisse, G., additional, Nicolas, J., additional, Podvin, T., additional, Pont, V., additional, Rea, G., additional, Renard, J.-B., additional, Roblou, L., additional, Schepanski, K., additional, Schwarzenboeck, A., additional, Sellegri, K., additional, Sicard, M., additional, Solmon, F., additional, Somot, S., additional, Torres, B, additional, Totems, J., additional, Triquet, S., additional, Verdier, N., additional, Verwaerde, C., additional, Waquet, F., additional, Wenger, J., additional, and Zapf, P., additional
- Published
- 2016
- Full Text
- View/download PDF
45. Atmospheric water-soluble organic nitrogen (WSON) over marine environments: a global perspective
- Author
-
Violaki, K., Sciare, J., Williams, J., Baker, A. R., Martino, M., Mihalopoulos, N., Violaki, K., Sciare, J., Williams, J., Baker, A. R., Martino, M., and Mihalopoulos, N.
- Abstract
To obtain a comprehensive picture of the spatial distribution of water-soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and southern Atlantic Ocean and also in the southern Indian Ocean (Amsterdam Island) for a 1-year period (2005). Samples were analyzed for both organic and inorganic forms of nitrogen, and the factors controlling their levels were examined. Fine-mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 +/- 3.3 nmol N m(-3)) accounting for about 84% of the total dissolved nitrogen (TDN). Such concentrations are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 +/- 14.0 nmol N m(-3)). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the levels in the Northern Hemisphere (NH) being 10 times higher than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of fine-mode WSON to TDN (51 %) in the SH, compared to the NH (13 %), underlines the important role of organic nitrogen in remote marine areas. Finally, there was a strong association of WSON with dust in coarse-mode aerosols in the NH.
- Published
- 2015
- Full Text
- View/download PDF
46. ACTRIS ACSM intercomparison - Part 2
- Author
-
University of Helsinki, Department of Physics, Froehlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G., Aas, W., Aijala, M., Alastuey, A., Artinano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillon, M. C., Mocnik, G., O'Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Esteve, R., Wiedensohler, A., Baltensperger, U., Sciare, J., Prevot, A. S. H., University of Helsinki, Department of Physics, Froehlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G., Aas, W., Aijala, M., Alastuey, A., Artinano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillon, M. C., Mocnik, G., O'Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Esteve, R., Wiedensohler, A., Baltensperger, U., Sciare, J., and Prevot, A. S. H.
- Abstract
Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December similar to 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f(44)), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f(44) in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depen
- Published
- 2015
47. ACTRIS ACSM intercomparison - Part 1
- Author
-
University of Helsinki, Department of Physics, Crenn, V., Sciare, J., Croteau, P. L., Verlhac, S., Froehlich, R., Belis, C. A., Aas, W., Äijälä, M., Alastuey, A., Artinano, B., Baisnee, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco, F., Carbone, C., Cavalli, F., Coz, E., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Lunder, C., Minguillon, M. C., Mocnik, G., O'Dowd, C. D., Ovadnevaite, J., Petit, J. -E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Sarda-Esteve, R., Slowik, J. G., Setyan, A., Wiedensohler, A., Baltensperger, U., Prevot, A. S. H., Jayne, J. T., Favez, O., University of Helsinki, Department of Physics, Crenn, V., Sciare, J., Croteau, P. L., Verlhac, S., Froehlich, R., Belis, C. A., Aas, W., Äijälä, M., Alastuey, A., Artinano, B., Baisnee, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco, F., Carbone, C., Cavalli, F., Coz, E., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Lunder, C., Minguillon, M. C., Mocnik, G., O'Dowd, C. D., Ovadnevaite, J., Petit, J. -E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Sarda-Esteve, R., Slowik, J. G., Setyan, A., Wiedensohler, A., Baltensperger, U., Prevot, A. S. H., Jayne, J. T., and Favez, O.
- Abstract
As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall-early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r(2) > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36% for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some reco
- Published
- 2015
48. ACTRIS ACSM intercomparison - Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments
- Author
-
Crenn, V., Sciare, J., Croteau, P.L., Verlhac, S., Fröhlich, R., Belis, C.A., Aas, W., Äijälä, M., Alastuey, Andrés, Artíñano, Begoña, Baisnée, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco, F., Carbone, C., Cavalli, F., Coz, Esther, Cubison, M.J., Esser-Gietl, J.K., Green, D.C., Gros, V., Heikkinen, L., Herrmann, Hartmut, Lunder, C., Minguillón, María Cruz, Močnik, G., O'Dowd, Colin D., Ovadnevaite, Jurgita, Petit, J.E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Sarda-Estève, R., Slowik, J.G., Setyan, A., Wiedensohler, Alfred, Baltensperger, U., Prévôt, André S.H., Jayne, J.T., Favez, O., Crenn, V., Sciare, J., Croteau, P.L., Verlhac, S., Fröhlich, R., Belis, C.A., Aas, W., Äijälä, M., Alastuey, Andrés, Artíñano, Begoña, Baisnée, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco, F., Carbone, C., Cavalli, F., Coz, Esther, Cubison, M.J., Esser-Gietl, J.K., Green, D.C., Gros, V., Heikkinen, L., Herrmann, Hartmut, Lunder, C., Minguillón, María Cruz, Močnik, G., O'Dowd, Colin D., Ovadnevaite, Jurgita, Petit, J.E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Sarda-Estève, R., Slowik, J.G., Setyan, A., Wiedensohler, Alfred, Baltensperger, U., Prévôt, André S.H., Jayne, J.T., and Favez, O.
- Abstract
As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall - early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36 % for NR-PM, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recomme
- Published
- 2015
49. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers
- Author
-
Fröhlich, R., Crenn, V., Setyan, A., Belis, C.A., Canonaco, F., Favez, O., Riffault, V., Slowik, J.G., Aas, W., Äijälä, M., Alastuey, Andrés, Artíñano, Begoña, Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, Esther, Croteau, P.L., Cubison, M.J., Esser-Gietl, J.K., Green, D.C., Gros, V., Heikkinen, L., Herrmann, Hartmut, Jayne, J.T., Lunder, C.R., Minguillón, María Cruz, MoÄnik, G., O'Dowd, Colin D., Ovadnevaite, Jurgita, Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., Wiedensohler, Alfred, Baltensperger, U., Sciare, J., Prévôt, André S.H., Fröhlich, R., Crenn, V., Setyan, A., Belis, C.A., Canonaco, F., Favez, O., Riffault, V., Slowik, J.G., Aas, W., Äijälä, M., Alastuey, Andrés, Artíñano, Begoña, Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, Esther, Croteau, P.L., Cubison, M.J., Esser-Gietl, J.K., Green, D.C., Gros, V., Heikkinen, L., Herrmann, Hartmut, Jayne, J.T., Lunder, C.R., Minguillón, María Cruz, MoÄnik, G., O'Dowd, Colin D., Ovadnevaite, Jurgita, Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., Wiedensohler, Alfred, Baltensperger, U., Sciare, J., and Prévôt, André S.H.
- Abstract
© Author(s) 2015. Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December∼2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's averag
- Published
- 2015
50. ECOC comparison exercise with identical thermal protocols after temperature offset correction - Instrument diagnostics by in-depth evaluation of operational parameters
- Author
-
Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, Mar, Hitzenberger, R., Vecchi, R., Saraga, D., Sciare, J., Jaffrezo, J.L., John, A., Schwarz, J., Giannoni, M., Novak, J., Karanasiou, Angeliki, Fermo, P., Maenhaut, W., Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, Mar, Hitzenberger, R., Vecchi, R., Saraga, D., Sciare, J., Jaffrezo, J.L., John, A., Schwarz, J., Giannoni, M., Novak, J., Karanasiou, Angeliki, Fermo, P., and Maenhaut, W.
- Abstract
© Author(s) 2015. A comparison exercise on thermal-optical elemental carbon/organic carbon (ECOC) analysers was carried out among 17 European laboratories. Contrary to previous comparison exercises, the 17 participants made use of an identical instrument set-up, after correcting for temperature offsets with the application of a recently developed temperature calibration kit (Sunset Laboratory Inc, OR, US). Temperature offsets reported by participants ranged from -93 to +100 °C per temperature step. Five filter samples and two sucrose solutions were analysed with both the EUSAAR2 and NIOSH870 thermal protocols. z scores were calculated for total carbon (TC); nine outliers and three stragglers were identified. Three outliers and eight stragglers were found for EC. Overall, the participants provided results between the warning levels with the exception of two laboratories that showed poor performance, the causes of which were identified and corrected through the course of the comparison exercise. The TC repeatability and reproducibility (expressed as relative standard deviations) were 11 and 15% for EUSAAR2 and 9.2 and 12% for NIOSH870; the standard deviations for EC were 15 and 20% for EUSAAR2 and 20 and 26% for NIOSH870. TC was in good agreement between the two protocols, TCNIOSH870 =0.98 × TCEUSAAR2 (R2 = 1.00, robust means). Transmittance (TOT) calculated EC for NIOSH870 was found to be 20% lower than for EUSAAR2, ECNIOSH870 = 0.80 × ECEUSAAR2 (R2 = 0.96, robust means). The thermograms and laser signal values were compared and similar peak patterns were observed per sample and protocol for most participants. Notable deviations from the typical patterns indicated either the absence or inaccurate application of the temperature calibration procedure and/or pre-oxidation during the inert phase of the analysis. Low or zero pyrolytic organic carbon (POC), as reported by a few participants, is suggested as an indicator of an instrument-specific pre-oxidation. A sample-spe
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.