1. Arcus: the soft x-ray grating explorer
- Author
-
Jon M. Miller, Marshall W. Bautz, Peter Cheimets, Laura Brenneman, David P. Huenemoerder, Eric J. Miller, Michael A. Nowak, Stephen Walker, Claude R. Canizares, Herman L. Marshall, Lynne A. Valencic, Nancy Brickhouse, Frits Paerels, Paul B. Reid, Joel N. Bregman, Jay Bookbinder, Michael McDonald, David N. Burrows, Abraham D. Falcone, Jonathan F. Schonfeld, Kirpal Nandra, H. Moritz Günther, Simon Dawson, Ralf K. Heilmann, Luigi C. Gallo, Kristin K. Madsen, I. Kreykenbohm, Catherine E. Grant, Karolyn Ronzano, Alan P. Smale, Michael McEachen, Jelle Kaastra, Richard F. Mushotzky, Mark L. Schattenburg, Steve Jara, Andrew Ptak, Joseph Bushman, Pasquale Temi, Scott J. Wolk, Casey T. DeRoo, Margaret H. Abraham, Norbert S. Schulz, Vadim Burwitz, Adam R. Foster, Randall L. McEntaffer, Robert Petre, Elisa Costantini, Jeremy S. Sanders, Deepto Chakrabarty, Katja Poppenhaeger, Richard Willingale, Grace Baird, Butler Hine, Elisabeth Morse, Joern Wilms, Randall K. Smith, and Siegmund, Oswald H.
- Subjects
Diffraction ,Physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Grating ,Galaxy ,Orbit ,Stars ,Optics ,Focal length ,Astrophysics::Earth and Planetary Astrophysics ,Halo ,Spectral resolution ,business - Abstract
Arcus provides high-resolution soft X-ray spectroscopy in the 12-50 Å bandpass with unprecedented sensitivity, including spectral resolution < 2500 and effective area < 250 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback, and (3) to explore how stars form and evolve. Arcus uses the same 12 m focal length grazing-incidence Silicon Pore X-ray Optics (SPOs) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. Combined with the high-heritage NGIS LEOStar-2 spacecraft and launched into 4:1 lunar resonant orbit, Arcus provides high sensitivity and high efficiency observing of a wide range of astrophysical sources.
- Published
- 2019