1. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
- Author
-
Krishna, A. (A.), Zhang, H. (H.), Zhou, Z. (Z.), Gallet, T. (T.), Dankl, M. (M.), Ouellette, O. (O.), Eickemeyer, F.T. (F. T.), Fu, F. (F.), Sanchez, S. (S.), Mensi, M. (M.), Zakeeruddin, S.M. (S. M.), Rothlisberger, U. (U.), Reddy, M. (Manjunatha), Redinger, A. (A.), Grätzel, M. (M.), Hagfeldt, A. (A.), Ecole Polytechnique Fédérale de Lausanne (EPFL), University of Luxembourg [Luxembourg], Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Fonds National de la Recherche - FnR [sponsor], Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, Ecole Polytechnique Fédérale de Lausanne [EPFL], and Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
- Subjects
spectroscopy ,Materials science ,Passivation ,Physics [G04] [Physical, chemical, mathematical & earth Sciences] ,induced degradation ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Photovoltaics ,Nano ,halide perovskites ,Environmental Chemistry ,Molecular self-assembly ,solid-state nmr ,Thermal stability ,passivation ,Nanoscopic scale ,Perovskite (structure) ,Renewable Energy, Sustainability and the Environment ,Open-circuit voltage ,business.industry ,Energy conversion efficiency ,light-emitting-diodes ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Pollution ,0104 chemical sciences ,Chemistry ,solar-cells ,Physique [G04] [Physique, chimie, mathématiques & sciences de la terre] ,Nuclear Energy and Engineering ,open-circuit voltage ,Optoelectronics ,iodide ,0210 nano-technology ,business ,Interfacial engineering ,performance - Abstract
We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized TS80 (the time over which the device efficiency reduces to 80% after initial burn-in) of ≈5950 h at 40 °C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I2 release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs., The molecular level interface engineering with a multifunctional ligand 2,5-thiophenedicarboxylic acid suppresses interfacial ion diffusion and inhibits I2 formation, which leads to high operational stability with T80 of 3570 h along with PCE of 23.4%.
- Full Text
- View/download PDF