1. Strange Hadron Spectroscopy with Secondary KL Beam in Hall D
- Author
-
KLF Collaboration, Amaryan, Moskov, Bashkanov, Mikhail, Dobbs, Sean, Ritman, James, Stevens, Justin, Strakovsky, Igor, Adhikari, Shankar, Asaturyan, Arshak, Austregesilo, Alexander, Baalouch, Marouen, Baturin, Vitaly, Berdnikov, Vladimir, Becerra, Olga Cortes, Black, Timothy, Boeglin, Werner, Briscoe, William, Brooks, William, Burkert, Volker, Chudakov, Eugene, Clash, Geraint, Cole, Philip, Crede, Volker, Day, Donal, Degtyarenko, Pavel, Deur, Alexandre, Dodge, Gail, Dolgolenko, Anatoly, Eidelman, Simon, Egiyan, Hovanes, Epifanov, Denis, Eugenio, Paul, Fegan, Stuart, Filippi, Alessandra, Furletov, Sergey, Gan, Liping, Garibaldi, Franco, Gasparian, Ashot, Gavalian, Gagik, Glazier, Derek, Gleason, Colin, Goryachev, Vladimir, Guo, Lei, Hamilton, David, Hayrapetyan, Avetik, Huber, Garth, Hurley, Andrew, Hyde, Charles, Illari, Isabella, Ireland, David, Jaegle, Igal, Joo, Kyungseon, Kakoyan, Vanik, Kalicy, Grzegorz, Kamel, Mahmoud, Keith, Christopher, Kim, Chan Wook, Klemp, Eberhard, Krafft, Geoffrey, Kuhn, Sebastian, Kuleshov, Sergey, Laptev, Alexander, Larin, Ilya, Lawrence, David, Lersch, Daniel, Li, Wenliang, Luckas, Kevin, Lyubovitskij, Valery, Mack, David, McCaughan, Michael, Manley, Mark, Marukyan, Hrachya, Matveev, Vladimir, Mocanu, Mihai, Mokeev, Viktor, Meyer, Curtis, McKinnon, Bryan, Nerling, Frank, Nicol, Matthew, Niculescu, Gabriel, Ostrovidov, Alexander, Papandreou, Zisis, Park, KiJun, Pasyuk, Eugene, Pauli, Peter, Pentchev, Lubomir, Phelps, William, Price, John, Reinhold, Jorg, Romanov, Dimitri, Salgado, Carlos, Satogata, Todd, Schadmand, Susan, Schertz, Amy, Schmidt, Axel, Sober, Daniel, Somov, Alexander, Somov, Sergei, Tarasov, Victor, Taylor, Simon, Thiel, Annika, Urciuoli, Guido Maria, Szumila-Vance, Holly, Watts, Daniel, Weinstein, Lawrence, Whitlatch, Timothy, Wickramaarachchi, Nilanga, Wojtsekhowski, Bogdan, Zachariou, Nicholas, Zarling, Jonathan, Zhang, Jixie, Anisovich, Alexey, Bazavov, Alexei, Bellwied, Rene, Bernard, Veronique, Colangelo, Gilberto, Cieply, Ales, Doring, Michael, Eskanderian, Ali, Goity, Jose, Haberzettl, Helmut, Hadzimehmedovic, Mirza, Jaffe, Robert, Kopeliovich, Boris, Leutwyler, Heinrich, Mai, Maxim, Mart, Terry, Matveev, Maxim, Meissner, Ulf-G., Morningstar, Colin, Moussallam, Bachir, Nakayama, Kanzo, Ochs, Wolfgang, Oh, Youngseok, Omerovic, Rifat, Osmanovic, Hedim, Oset, Eulogio, Palano, Antimo, Pelaez, Jose, Pilloni, Alessandro, Polyakov, Maxim, Richards, David, Rodas, Arkaitz, Riska, Dan-Olof, de Elvira, Jacobo Ruiz, Ryu, Hui-Young, Santopinto, Elena, Sarantsev, Andrey, Stahov, Jugoslav, Svarc, Alfred, Szczepaniak, Adam, Workman, Ronald, and Zou, Bing-Song
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general., Comment: Final version of the KLF Proposal [C12-19-001] approved by JLab PAC48. The intermediate version of the proposal was posted in arXiv:1707.05284 [hep-ex]. 103 pages, 52 figures, 8 tables, 324 references. Several typos were fixed
- Published
- 2020