211 results on '"Mortimer, Peter E."'
Search Results
2. Insights into the mechanisms involved in the fungal degradation of plastics
- Author
-
Okal, Eyalira Jacob, Heng, Gui, Magige, Ephie A., Khan, Sehroon, Wu, Shixi, Ge, Zhiqiang, Zhang, Tianfu, Mortimer, Peter E., and Xu, Jianchu
- Published
- 2023
- Full Text
- View/download PDF
3. Assessing the threat of bat-associated fungal pathogens
- Author
-
Karunarathna, Samantha C., Haelewaters, Danny, Lionakis, Michail S., Tibpromma, Saowaluck, Jianchu, Xu, Hughes, Alice C., and Mortimer, Peter E.
- Published
- 2023
- Full Text
- View/download PDF
4. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses
- Author
-
Phookamsak, Rungtiwa, primary, Hongsanan, Sinang, additional, Bhat, Darbhe Jayarama, additional, Wanasinghe, Dhanushka N., additional, Promputtha, Itthayakorn, additional, Suwannarach, Nakarin, additional, Kumla, Jaturong, additional, Xie, Ning, additional, Dawoud, Turki M., additional, Mortimer, Peter E., additional, Xu, Jianchu, additional, and Lumyong, Saisamorn, additional
- Published
- 2024
- Full Text
- View/download PDF
5. Taxonomic novelties and global biogeography of Montagnula (Ascomycota, Didymosphaeriaceae)
- Author
-
Wanasinghe, Dhanushka N., primary, Nimalrathna, Thilina S., additional, Qin Xian, Li, additional, Faraj, Turki Kh., additional, Xu, Jianchu, additional, and Mortimer, Peter E., additional
- Published
- 2024
- Full Text
- View/download PDF
6. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses.
- Author
-
Phookamsak, Rungtiwa, Hongsanan, Sinang, Bhat, Darbhe Jayarama, Wanasinghe, Dhanushka N., Promputtha, Itthayakorn, Suwannarach, Nakarin, Kumla, Jaturong, Xie, Ning, Dawoud, Turki M., Mortimer, Peter E., Xu, Jianchu, and Lumyong, Saisamorn
- Subjects
CLADISTIC analysis ,FUNGI classification ,SPECIES ,FERNS ,RESEARCH personnel ,GRASSES - Abstract
This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicola hongheensis, Periconia kunmingensis and Trichobotrys sinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Taxonomic novelties and global biogeography of Montagnula (Ascomycota, Didymosphaeriaceae).
- Author
-
Wanasinghe, Dhanushka N., Nimalrathna, Thilina S., Li Qin Xian, Faraj, Turki Kh., Jianchu Xu, and Mortimer, Peter E.
- Subjects
BIOGEOGRAPHY ,ASCOMYCETES ,RIBOSOMAL RNA ,PLANT communities ,MICROFUNGI - Abstract
Whilst conducting surveys of lignicolous microfungi in Yunnan Province, we collected a large number of taxa that resemble Montagnula (Didymosphaeriaceae, Pleosporales). Our phylogenetic study on Montagnula involved analysing sequence data from ribosomal RNA genes (nc18S, nc28S, ITS) and protein-coding genes (rpb2, tef1-a). We present a biphasic approach (morphological and molecular phylogenetic evidence) that supports the recognition of four new species in Montagnula viz., M. lijiangensis, M. menglaensis, M. shangrilana and M. thevetiae. The global diversity of Montagnula is also inferred from metabarcoding data and published records based on field observations. Metabarcoding data from GlobalFungi and field observations provided insights into the global diversity and distribution patterns of Montagnula. Studies conducted in Asia, Australia, Europe, and North America revealed a concentration of Montagnula species, suggesting regional variations in ecological preferences and distribution. Montagnula species were found on various substrates, with sediments yielding a high number of sequences. Poaceae emerged as a significant contributor, indicating a potential association between Montagnula species and grasses. Culture-based investigations from previously published data revealed Montagnula species associations with 105 plant genera (in 45 plant families), across 55 countries, highlighting their wide ecological range and adaptability. This study enhances our understanding of the taxonomy, distribution, and ecological preferences of Montagnula species. It emphasizes their role in the decomposition of organic matter in grasslands and savannah systems and suggests further investigation into their functional roles in ecosystem processes. The global distribution patterns and ecological interactions of Montagnula species underscore the need for continued research and conservation efforts. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Scolecohyalosporium thailandense Phookamsak & Hongsanan & Bhat & Xu & Mortimer & Suwannarach & Kumla & Dawoud & Lumyong 2023, sp. nov
- Author
-
Phookamsak, Rungtiwa, Hongsanan, Sinang, Bhat, Darbhe Jayarama, Xu, Jianchu, Mortimer, Peter E., Suwannarach, Nakarin, Kumla, Jaturong, Dawoud, Turki M., and Lumyong, Saisamorn
- Subjects
Ascomycota ,Parabambusicolaceae ,Dothideomycetes ,Fungi ,Biodiversity ,Scolecohyalosporium ,Pleosporales ,Taxonomy ,Scolecohyalosporium thailandense - Abstract
Scolecohyalosporium thailandense Phookamsak & Hongsanan, sp. nov. FIGURE 2 Index Fungorum number: IF 900245; Facesoffungi number: FoF 14015 Etymology: The specific epithet “ thailandense ” refers to the locality in Thailand, where the holotype was collected. Holotype: MFLU 11-0164 Saprobic on dead culm of Imperata sp. (Poaceae). Sexual morph Ascomata 180–250 μm high (including papilla), 145–370 µm diam., scattered solitary, semi-immersed to erumpent through the host tissue, visible as a black, shiny knob on host surface, subglobose to ampulliform, or irregular in shape, uni-loculate, glabrous, with a central, rounded to truncate ostiole, perched on a subconical to mammiform apical papilla, filled with hyaline periphyses. Peridium 10–30 μm wide, of equal thickness, composed of several layers of flattened, dark brown pseudoparenchymatous cells, paler towards the inner layers, arranged in textura angularis to textura prismatica. Hamathecium composed of numerous, 2–4 μm wide, filamentous, septate, broad, cellular pseudoparaphyses, constricted at the septa, tapering towards the apex, anastomosed above the asci, embedded in a hyaline gelatinous matrix. Asci 138–160(–170) × 7–10 μm (x̅ = 153.7 × 9.1 μm, n = 25), 8-spored, bitunicate, cylindrical to subcylindric-clavate, subsessile to short pedicellate, apically rounded, with subconical ocular chamber clearly visible in the immature state. Ascospores (135–)140–160(–166) × 2–3 μm (x̅ = 150.7 × 2.8 μm, n = 15), overlapping, parallelly to spirally arranged, filiform, tapering towards the lower cell, pale yellowish to yellowish, curved, smooth-walled, with 15–25 non-constricted septa, lacking a mucilaginous sheath. Asexual morph Undetermined. Culture characteristics:— Colonies on PDA reaching 32–35 mm diam. after 2 weeks at room temperature (25– 35 °C). Colony dense, circular, slightly raised, to low convex, surface smooth, with edge entire, floccose; from above, dark brown to greenish-black; from below, black; not producing pigmentation on agar medium. Material examined:— Thailand, Chiang Rai Province, Mae Fah Luang District, Doi Tung, on a dead culm of Imperata sp. (Poaceae), 29 June 2010, R. Phookamsak, RP0044 (MFLU 11-0164, holotype!), ex-type living culture = MFLUCC 11-0128. Notes:— Based on the nucleotide BLAST search of ITS sequence, Scolecohyalosporium thailandense (strain MFLUCC 11-0128) showed the closest similarity with Multiseptospora sp. strain SFC20220920-G141 with 98.23% similarity (Identities = 556/566 bp, with one gap), and Scolecohyalosporium sp. GCR-2022a isolate KUMCC 21-0508 (97.96% similarity, Identities = 528/539 bp, with one gap) and isolate KUMCC 21-0507 (97.95% similarity, Identities = 525/536 bp, with one gap). Scolecohyalosporium thailandense (strain MFLUCC 11-0128) is also similar to the generic type, S. submersum strain HKAS 122242 (strain from type material), with 97.15% similarity (Identities = 478/492 bp, with one gap). The nucleotide BLAST search of LSU sequence indicated that S. thailandense (strain MFLUCC 11-0128) is similar to S. submersum strains HKAS 122242, KUMCC 21-0412, and KUMCC 21-0413 with 98.78% similarity (Identities = 809/819 bp, with one gap), and to Scolecohyalosporium sp. GCR-2022a (isolates KUMCC 21-0508 and KUMCC 21-0507) with 98.66% similarity (Identities = 808/819 bp, with one gap). The nucleotide BLAST search of TEF1-α sequence indicated that S. thailandense (strain MFLUCC 11-0128) has the closest similarity with Neomultiseptospora yunnanensis (strains KUN-HKAS 122240 and KUMCC 21-0411) with 97.04% similarity (Identities = 885/912 bp, with no gap), to Paramultiseptospora bambusae (voucher KUN-HKAS 122241B and KUN-HKAS 122241A) with 96.80% similarity (Identities = 907/937 bp, with no gap), and to Multiseptospora thailandica strain MFLUCC 12-0006 with 96.69% similarity (Identities = 818/846 bp, with no gap). Scolecohyalosporium thailandense is also similar to the generic type, S. submersum (strains KUN-HKAS 122242 and KUMCC 21-0413), with 96.63% similarity (Identities = 888/919 bp, with no gap). Based on a nucleotide pairwise comparison, Scolecohyalosporium thailandense (strain MFLUCC 11-0128) differs from S. submersum (KUMCC 21-0412, ex-type strain) in 17/465 bp of ITS (3.65%), 10/850 bp of LSU (1.18%), and 33/928 bp of TEF1-α (3.56%). The species is also different from Scolecohyalosporium sp. GCR-2022a (isolates KUMCC 21-0508 and KUMCC 21-0507) in 10/465 bp of ITS (2.15%) and 11/818 bp of LSU (1.34%), while TEF1-α sequence data of Scolecohyalosporium sp. GCR-2022a (isolates KUMCC 21-0508 and KUMCC 21-0507) is unavailable. Morphologically, Scolecohyalosporium thailandense can be easily distinguished from S. submersum (HKAS 122242, generic type) in having smaller sized ascomata (180–250 × 145–370 μm vs. 370–480 × 380–600 μm), asci (138–160(–170) × 7–10 μm vs. (200–)250–300(–370) × 7–9(–11) μm), and ascospores ((135–)140–160(–166) × 2–3 μm vs. (230–)260–285(–315) × 1.5–2.2 μm) (Xie et al. 2022). Scolecohyalosporium thailandense also differs from S. submersum in having pale yellowish to yellowish and 15–25-septate ascospores, whereas S. submersum has hyaline and multi-septate ascospores (up to 20 septa) (Xie et al. 2022). Multigene phylogenetic evidence also supported their distinctiveness (FIGURE 1). Therefore, S. thailandense is introduced herein as the new species following the justification guidelines of Jeewon & Hyde (2016)., Published as part of Phookamsak, Rungtiwa, Hongsanan, Sinang, Bhat, Darbhe Jayarama, Xu, Jianchu, Mortimer, Peter E., Suwannarach, Nakarin, Kumla, Jaturong, Dawoud, Turki M. & Lumyong, Saisamorn, 2023, Scolecohyalosporium thailandense sp. nov. (Parabambusicolaceae, Pleosporales) collected on Imperata sp. (Poaceae) in northern Thailand, pp. 267-282 in Phytotaxa 594 (4) on page 275, DOI: 10.11646/phytotaxa.594.4.4, http://zenodo.org/record/7917043, {"references":["Xie, N., Phookamsak, R., Jiang, H. B., Zeng, Y. J., Zhang, H., Xu, F., Lumyong, S., Xu, J. C. & Hongsanan, S. (2022) Morpho-molecular characterization of five novel taxa in Parabambusicolaceae (Massarineae, Pleosporales) from Yunnan, China. Journal of Fungi 8: 108. https: // doi. org / 10.3390 / jof 8020108","Jeewon, R. & Hyde, K. D. (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669 - 1677. https: // doi. org / 10.5943 / mycosphere / 7 / 11 / 4"]}
- Published
- 2023
- Full Text
- View/download PDF
9. Connecting the multiple dimensions of global soil fungal diversity
- Author
-
Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Mikryukov, Vladimir, Dulya, Olesya, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Nilsson, Henrik, Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Duarte Ritter, Camila, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Doležal, Jiri, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Issifou, Kassim Tchan, Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Van Nuland, Michael, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Mikryukov, Vladimir, Dulya, Olesya, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Nilsson, Henrik, Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Duarte Ritter, Camila, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Doležal, Jiri, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Issifou, Kassim Tchan, Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Van Nuland, Michael, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, and Tedersoo, Leho
- Abstract
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
- Published
- 2023
10. Connecting the multiple dimensions of global soil fungal diversity
- Author
-
Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, and Abarenkov, Kessy
- Abstract
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on fungal local species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). Our work integrates fungi into the principles of global biodiversity distribution and presents detailed maps for biodiversity conservation and modeling of global ecological processes., How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on fungal local species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). Our work integrates fungi into the principles of global biodiversity distribution and presents detailed maps for biodiversity conservation and modeling of global ecological processes. ### Data overview These datasets contain comprehensive estimates of alpha, beta, and gamma diversity. The data are provided in two formats: TIFF (Tagged Image File Format) and GeoPackage formats, which are commonly used to store geospatially-referenced data. Alpha Diversity: `Alpha_S_*` files: These files contain estimates of alpha diversity (local species diversity) for each grid cell of a raster file. `Alpha_AOA_*` files: These files outline the 'Area of Applicability' for the alpha diversity estimates. `Alpha_Uncertainty_*` files: These files contain data related to the uncertainty of the alpha diversity predictions. Uncertainty here represents the range or degree of error associated with the diversity estimates. `Alpha_Hotspots_and_ProtectedAreas` contains information on fungal diversity hotspots and their area under protection (based on IUCN classification). 'Hotspots' are areas with exceptionally high alpha diversity. Beta Diversity: `Beta_*` f
- Published
- 2023
11. Ten decadal advances in fungal biology leading towards human well‑being
- Author
-
Mapook, Ausana, Hyde, Kevin D., Hassan, Khadija, Matio Kemkuignou, Blondelle, Čmoková, Adéla, Surup, Frank, Kuhnert, Eric, Paomephan, Pathompong, Cheng, Tian, de Hoog, Sybren, Song, Yinggai, Jayawardena, Ruvishika S., Al‑Hatmi, Abdullah M. S., Mahmoudi,Tokameh, Ponts, Nadia, Studt‑Reinhold, Lena, Richard‑Forget, Florence, Chethana, K. W. Thilini, Harishchandra, Dulanjalee L., Mortimer, Peter E., Li, Huili, Lumyong, Saisamorm, Aiduang, Worawoot, Kumla, Jaturong, Suwannarach, Nakarin, Bhunjun, Chitrabhanu S., Yu, Feng‑Ming, Zhao, Qi, Schaefer, Doug, and Stadler, Marc
- Subjects
Biomaterial ,· CRISPR ,Drug development ,· Morel cultivation ,· Mushroom cultivation ,· Mycotoxin biosynthesis ,· Plastic degradation - Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of –OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
- Published
- 2023
12. Pseudophaeocytostroma Monkai & Phookamsak 2022, gen. nov
- Author
-
Monkai, Jutamart, Phookamsak, Rungtiwa, Xu, Sheng, Xu, Jianchu, Mortimer, Peter E., Karunarathna, Samantha C., Suwannarach, Nakarin, and Lumyong, Saisamorn
- Subjects
Ascomycota ,Sordariomycetes ,Fungi ,Diaporthaceae ,Biodiversity ,Diaporthales ,Pseudophaeocytostroma ,Taxonomy - Abstract
Pseudophaeocytostroma Monkai & Phookamsak, gen. nov. Index Fungorum number: IF559820; Facesoffungi number: FoF 12716 Etymology: “ Pseudophaeocytostroma ” refers to the morphological similarity to the genus Phaeocytostroma. Saprobic on dead bamboo culms. Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata pycnidial, immersed in the clypeus, becoming raised, erumpent, penetrating on host surface, with small black dots of conidial masses, hemispherical to subconical or lenticularis, uni- to bi-loculate, with an ostiole at the center, occasionally produced 2 ostioles in a locule, glabrous. Ostioles minutely papillate, immersed in host epidermis, circular. Conidiomatal wall consist of several layers of pseudoparenchymatous cells, arranged in a textura angularis, with dark brown outer layers and hyaline to pale brown towards the inner layers. Paraphyses intermingled between conidiophores, broadly filiform, septate, hyaline, unbranched, obtuse at the apex, with small granules. Conidiophores tightly aggregated, subcylindrical to ampulliform, or irregular in shape, septate, hyaline to pale brown, branched only at the base. Conidiogenous cells enteroblastic, phialidic, determinate, integrated, subcylindrical, tapering towards the apex, hyaline, smooth-walled. Conidia oblong to ellipsoid, obtuse at both ends, aseptate, brown, thick and smoothwalled, guttules. Type species:— Pseudophaeocytostroma bambusicola Monkai & Phookamsak Notes:— Pseudophaeocytostroma resembles the generic description of Phaeocytostroma including immersed, uni- to multilocular conidiomata, filiform paraphyses and aseptate conidia (Sutton 1980). However, their conidial shapes are different as Pseudophaeocytostroma has oblong to ellipsoid conidia, while Phaeocytostroma has ellipsoid to fusiform or pyriform conidia (Sutton 1980). Pustulomyces also has aseptate conidia, but can be distinguished from Pseudophaeocytostroma by pustule-like conidiomata and fusiform or sigmoid conidia (Dai et al. 2014). Pseudophaeocytostroma is different from Massariothea which produces distoseptate conidia, but they are similar in having uni- to multilocular conidiomata, ostiolate and filiform paraphyses (Thambugala & Hyde 2018). Stenocarpella differs from Pseudophaeocytostroma in having unilocular, elongated conidiomata, lacking paraphyses and 0–3 septate conidia (Sutton 1980, Lamprecht et al. 2011). Phylogenetic analyses results showed that Pseudophaeocytostroma clustered with Pustulomyces with 50% ML support and both genera formed a well-resolved clade basal to Phaeocytostroma sensu stricto, Massariothea and Stenocarpella with 78% ML and 76% MP support (FIGURE 1). The weak support in Pustulomyces is probably caused by the single strain. Pustulomyces also formed a separate branch basal to Pseudophaeocytostroma with no support in BI analysis, thus more sequence data from fresh collections are essential to resolve its phylogenetic placement. Therefore, we introduce Pseudophaeocytostroma as a new genus in Diaporthaceae based on a strong support in phylogenetic incongruence to other related genera (viz. Phaeocytostroma, Pustulomyces, Massariothea and Stenocarpella), although the morphological characteristics of Pseudophaeocytostroma and Phaeocytostroma are not significantly different., Published as part of Monkai, Jutamart, Phookamsak, Rungtiwa, Xu, Sheng, Xu, Jianchu, Mortimer, Peter E., Karunarathna, Samantha C., Suwannarach, Nakarin & Lumyong, Saisamorn, 2022, Pseudophaeocytostroma bambusicola gen. et sp. nov. (Diaporthaceae) from bamboo in Yunnan, P. R. China, pp. 39-51 in Phytotaxa 571 (1) on pages 44-45, DOI: 10.11646/phytotaxa.571.1.3, http://zenodo.org/record/7270446, {"references":["Sutton, B. C. (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, pp. 1 - 696.","Dai, D. Q., Wijayawardene, N. N., Bhat, D. J., Chukeatirote, E., Bahkali, A. H., Zhao, R. L., Xu, J. C. & Hyde, K. D. (2014) Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie Mycologie 35: 63 - 72. https: // doi. org / 10.7872 / crym. v 35. iss 1.2014.63","Thambugala, K. M. & Hyde, K. D. (2018) Additions to the genus Massariothea in Diaporthaceae. Mycological Progress 17: 1139 - 1147. https: // doi. org / 10.1007 / s 11557 - 018 - 1426 - 1","Lamprecht, S. C., Crous, P. W., Groenewald, J. Z., Tewoldemedhin, Y. T. & Marasas, W. F. (2011) Diaporthaceae associated with root and crown rot of maize. IMA Fungus 2: 13 - 24. https: // doi. org / 10.5598 / imafungus. 2011.02.01.03"]}
- Published
- 2022
- Full Text
- View/download PDF
13. Pseudophaeocytostroma bambusicola Monkai & Phookamsak & Xu & Xu & Mortimer & Karunarathna & Suwannarach & Lumyong 2022, sp. nov
- Author
-
Monkai, Jutamart, Phookamsak, Rungtiwa, Xu, Sheng, Xu, Jianchu, Mortimer, Peter E., Karunarathna, Samantha C., Suwannarach, Nakarin, and Lumyong, Saisamorn
- Subjects
Pseudophaeocytostroma bambusicola ,Ascomycota ,Sordariomycetes ,Fungi ,Diaporthaceae ,Biodiversity ,Diaporthales ,Pseudophaeocytostroma ,Taxonomy - Abstract
Pseudophaeocytostroma bambusicola Monkai & Phookamsak, sp. nov. FIGURE 3 Index Fungorum number: IF559821; Facesoffungi number: FoF 12717 Etymology: Refers to the host bamboo from which the holotype was collected. Holotype: KUN-HKAS 124569; living culture, KUMCC 22-12407. Saprobic on dead bamboo culms. Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata 89–420 high × 250–704 μm diam., pycnidial, immersed in the clypeus, becoming raised, erumpent, penetrating on host surface, with small black dots of conidial masses, hemispherical to subconical or lenticularis, uni- to bi-loculate, with an ostiole at the center, occasionally produced 2 ostioles in a locule, glabrous. Ostioles up to 80 μm wide, minutely papillate, immersed in host epidermis, circular. Conidiomatal wall up to 60 μm wide, consist of several layers of pseudoparenchymatous cells, arranged in a textura angularis, with dark brown outer layers and hyaline to pale brown towards the inner layers. Paraphyses 59–148 long × 2–3 μm wide (x̅ = 99 × 2 μm, n = 20), intermingled between conidiophores, broadly filiform, septate, hyaline, unbranched, obtuse at the apex, with small granules. Conidiophores 4–10 × 2–5.5 μm (x̅ = 6 × 3 μm, n = 20), tightly aggregated, subcylindrical to ampulliform, or irregular in shape, septate, hyaline to pale brown, branched only at the base. Conidiogenous cells 8–12.5 × 2–3 μm (x̅ = 10 × 2.5 μm, n = 30), enteroblastic, phialidic, determinate, integrated, subcylindrical, tapering towards the apex, hyaline, smoothwalled. Conidia 9–13 × 3–4.5 μm (x̅ = 11 × 4 μm, n = 30), oblong to ellipsoid, obtuse at both ends, aseptate, brown, thick and smooth-walled, guttules. Known distribution:— Yunnan, China Culture characteristics:— Conidium germinating on water agar within 24 h at 25 °C. Colonies on PDA reached 5 cm diam. after 7 days at 25 °C, effuse, sparse, entire edge, circular, white in surface, dark gray to black in reverse. Material examined:— China, Yunnan Province, Honghe Autonomous Prefecture, Honghe County, Honghe Hani Rice Terraces, on dead bamboo culms, 26 January 2021, R. Phookamsak & S. C. Karunarathna, bn17 (KUN-HKAS 124569, holotype), ex-type living culture = KUMCC 22-12407; ibid., Honghe Autonomous Prefecture, Honghe County, Honghe Hani Rice Terraces, on dead bamboo culms, 26 January 2021, R. Phookamsak & S. C. Karunarathna, bn14 (KUN-HKAS 124568), living culture = KUMCC 22-12410 Notes:— The nucleotide BLAST search of ITS sequence indicated that Pseudophaeocytostroma bambusicola (KUMCC 22-12407) has the closest similarity with Phaeocytostroma sacchari strain CBS 275.34 with 96.26% similarity (Identities = 566/588, with 12 gaps), and is similar to Stenocarpella maydis strain Sm. A 1-1, CBS 117558 (ex-epitype strain), CPC 16787, CPC 16786, CPC 16782, CPC 16781, CPC 16779, CPC 16778, CPC 16777 with 95.54% similarity (Identities = 552/579, with 5 gaps). The nucleotide BLAST search of LSU sequence indicated that Ps. bambusicola (KUMCC 22-12407) has the closest similarity with Massariothea thysanolaenae strain MFLUCC 15- 0452 (ex-type strain) with 99.64% similarity (Identities = 829/832, with no gap), and is similar to P. ambiguum strain CBS 128561, CPC 17077, CPC 17076, CPC 17074, CPC 16776 with 99.64% similarity (Identities = 829/832, with one gap). The nucleotide BLAST search of TEF 1-α sequence indicated that Ps. bambusicola (KUMCC 22-12407) has the closest similarity with P. sacchari strain CBS 275.34 with 88.86% similarity (Identities = 303/341, with 11 gaps), and is similar to P. ambiguum strain CFMS _1294, CPC 17071 (ex-epitype strain), CPC 16776, CPC 17075 CPC 17074, CPC 17072, CPC 16775 with 84.83% similarity (Identities = 179/211, with 12 gaps). Pseudophaeocytostroma bambusicola is morphologically similar to Phaeocytostroma sacchari in having filiform paraphyses, aseptate, oblong to ellipsoid, brown, conidia with overlapping size (9–13 vs 9–14.5 μm) (Sutton 1964, 1980, TABLE 2). However, our new species differs from P. sacchari in having uni- to bilocular conidiomata, minutely papillate ostiole with wider conidiomata (250–704 vs 350 μm) and not abundant, septate, longer paraphyses (59–148 vs 15–35 μm), while P. sacchari has abundant and aseptate paraphyses (Sutton 1964, 1980, TABLE 2). The host preference of P. sacchari is Saccharum sp., Sorghum sp. and Zea mays (Sutton 1964, Farr & Rossman 2022, TABLE 2), whereas our new species was found on bamboo. In the phylogenetic analyses, Pseudophaeocytostroma bambusicola (KUMCC 22-12407, KUMCC 22-12410) formed a distinct subclade adjacent to Ps. “ sacchari ” strains CBS 275.34, UMICH-1, km-1 and 135 with high support (98% ML /95% MP /1.00 PP, FIGURE 1). The pairwise nucleotide comparison of ITS and TEF 1-α sequence data revealed significant differences (more than 1.5%) between Ps. bambusicola (KUMCC 22-12407) and Ps. “ sacchari ” strains CBS 275.34, km-1, UMICH-1 and 135 for each gene region (TABLE 3). The results of PHI test also supported the intraspecific variation among these strains and indicated the conspecific between strain UMICH-1 and km-1 (FIGURE 2). Thus, Ps. bambusicola was proposed as a new species based on morphological and phylogenetic evidence. *The host data was also obtained from Farr & Rossman (2022) Phaeocytostroma sacchari was introduced and described by Sutton (1964). Lamprecht et al. (2011) later provided the sequence data for P. sacchari, strain CBS 275.34 which was isolated from Japan without a mention of host substrates and no description provided. Carabez et al. (2014) isolated a fungus strain UMICH-1 from sugarcane displaying stalk rot symptoms in Mexico and identified it as P. sacchari based on morphology and the high similarity of the ITS blast search. Whereas, two strains of P. sacchari (km-1 and 135) were unpublished sequences from the GenBank. Thus, morphological descriptions are not available for these strains. Therefore, we treated these strains as Ps. “ sacchari ” until their correct identification could be confirmed. The examination of ex-type or epitype specimens, more fresh collections and additional sequences are needed for further studies on morphological and genetic variation in this group.
- Published
- 2022
- Full Text
- View/download PDF
14. Insight into the Taxonomic Resolution of Apiospora: Introducing Novel Species and Records from Bamboo in China and Thailand
- Author
-
Monkai, Jutamart, primary, Phookamsak, Rungtiwa, additional, Tennakoon, Danushka S., additional, Bhat, Darbhe Jayarama, additional, Xu, Sheng, additional, Li, Qinxian, additional, Xu, Jianchu, additional, Mortimer, Peter E., additional, Kumla, Jaturong, additional, and Lumyong, Saisamorn, additional
- Published
- 2022
- Full Text
- View/download PDF
15. The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils
- Author
-
Hu, Yuwei, primary, Bandara, Asanka R., additional, Xu, Jianchu, additional, Kakumyan, Pattana, additional, Hyde, Kevin D., additional, and Mortimer, Peter E., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Additions to the Inventory of the Genus Alternaria Section Alternaria (Pleosporaceae, Pleosporales) in Italy
- Author
-
Li, Junfu, primary, Phookamsak, Rungtiwa, additional, Jiang, Hongbo, additional, Bhat, Darbhe Jayarama, additional, Camporesi, Erio, additional, Lumyong, Saisamorn, additional, Kumla, Jaturong, additional, Hongsanan, Sinang, additional, Mortimer, Peter E., additional, Xu, Jianchu, additional, and Suwannarach, Nakarin, additional
- Published
- 2022
- Full Text
- View/download PDF
17. Colletotrichum jiangxiense F. Liu and L. Cai, Persoonia
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Colletotrichum jiangxiense ,Ascomycota ,Glomerellaceae ,Sordariomycetes ,Fungi ,Colletotrichum ,Biodiversity ,Glomerellales ,Taxonomy - Abstract
Colletotrichum jiangxiense F. Liu and L. Cai, Persoonia 35: 82 (2015) (Figure 7) Index Fungorum number: 809161 Saprobic or pathogenic on dead Asian House Gecko, white, cottony mycelium on the skin. Sexual morph: undetermined. Asexual morph: Mycelium 1.5–3.5 μm wide (x̅ = 2.5 μm, n = 30), granular to smooth, branched, with thick-walled septa. Conidiophores 2.5–5 μm (x̅ = 4 μm, n = 15), straight to slight curved, septate, smooth-walled, narrow in the terminal with a hyaline, cylindrical. Conidiogenous cells 10–20 × 1–3 µm (x̅ = 13 × 2.5 μm, n = 20), cylindric to flask-shaped, tapering at apex to narrow, phialidic conidiogenous locus. Conidia 10–20 × 3–5 μm (x̅ = 14 × 4 μm, n = 20), cylindrical to oblong, hyaline, thick-walled, granular to smooth, around, both ends bluntly rounded, or some see bottom end acute, appressoria not observed. Substratum: Camellia sinensis (Liu et al. 2015, Jayawardena et al. 2016 a, Wang et al. 2020); Citrus sinensis (De Silva et al. 2017) Persea americana (Fuentes-Aragón et al. 2020); Distribution: China (Liu et al. 2015, Jayawardena et al. 2016 a, De Silva et al. 2017, Wang et al. 2020); Mexico (Fuentes-Aragón et al. 2020); Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-1 (Herb. KUN-HKAS 122653), living culture, KUMCC 21-0466. Genbank numbers: ITS: OM 670162, HIS: OM 744410, CAL: OM 744409, ACT: OM 744408, tub2: OM 744407, GPDH: OM 744411. Culture characteristics: Colonies on PDA fast-growing, reach 60 mm in one week, above effuse, aerial mycelium, cottony, light grayish to olivaceous with white margin. Reverse: grayish orange to pale brown, black-brown at the central inoculation, with black pigmented margin, not sporulated, without pigments produced in PDA. Notes: Colletotrichum jiangxiense was first introduced by Liu et al. (2015) from Jiangxi province, China. Our isolate KUMCC 21-0466 has similar morphologies to members of Colletotrichum, and the BLASTn results of GAPDH, CHS- 1, ACT, tub2, CAL and ITS of our strain indicate 99–100% similarity with C. jiangxiense ZY 12 and C. jiangxiense (COP 27.905, LF 488). The multi-locus phylogenetic trees also showed our new isolate clusters together with C. jiangxiense ZY 12 with high statistical support values (ML: 94%, BI: 0.96; Figure 6); thus, we report C. jiangxiense KUMCC 21-0466 as a new host record associated with a reptile (Asian House Gecko) in this study., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 49, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Liu, F., Weir, B. S., Damm, U., Crous, P. W., Wang, Y., Liu, B., Wang, M., Zhang, M., Cai, L. (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63 - 86. https: // doi. org / 10.3767 / 003158515 X 687597","Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S. & Yan, J. Y. (2016 a) Notes on currently accepted species of Colletotrichum. Mycosphere 7: 1192 - 1260. https: // doi. org / 10.5943 / mycosphere / si / 2 c / 9","Hallouti, A., Ait Hamza, M., Zahidi, A., Ait Hammou, R., Bouharroud, R., Ait Ben Aoumar, A. & Boubaker, H. (2020) Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae )) in Moroccan Argan forests and nearby area: Impact of soil factors on their distribution. BMC ecology 20: 1 - 13. https: // doi. org / 10.1186 / s 12898 - 020 - 00334 - 2","De Silva, D. D., Ades, P. K., Crous, P. W. & Taylor, P. W. J. (2017) Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology 66: 254 - 267. https: // doi. org / 10.1111 / ppa. 12572","Fuentes-Aragon, D., Silva-Rojas, H. V., Guarnaccia, V., Mora-Aguilera, J. A., Aranda-Ocampo, S., Bautista-Martinez, N. & Teliz-Ortiz, D. (2020) Colletotrichum species causing anthracnose on avocado fruit in Mexico: Current status. Plant Pathology 69: 1513 - 1528. https: // doi. org / 10.1111 / ppa. 13234","Imoulan, A., Hussaina, M., Kirka, P. M., Mezianee, A. E. & Yao, Y. J. (2017) Entomopathogenic fungus Beauveria: host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. Journal of Asia-Pacific Entomology 20: 1204 - 1212. https: // doi. org / 10.1016 / j. aspen. 2017.08.015","Wang, Q. H., Fan, K., Li, D. W., Han, C. M., Qu, Y. Y., Qi, Y. K. & Wu, X. Q. (2020) Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China. Plant disease 104: 1358 - 1368. https: // doi. org / 10.1094 / PDIS- 12 - 19 - 2569 - RE"]}
- Published
- 2022
- Full Text
- View/download PDF
18. Beauveria bassiana Vuillemin 1912
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Cordycipitaceae ,Beauveria ,Beauveria bassiana ,Taxonomy - Abstract
Beauveria bassiana (Bals.-Criv.) Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) (Figure 5) Index Fungorum number: IF 199430 Saprobic or pathogenic on a dead Asian House Gecko, mycelium clusters on the forehead, recognized as a white, raised, fluffy region. Sexual morph: undetermined. Asexual morph: Aerial mycelium dense, raised, entire edge, white to yellowish, velutinous, powdery while sporulating, yellowish-brown from reverse. Vegetative hyphae 1–3 μm (x̅ = 1.7 μm, n = 30) wide, branched, hyaline, smooth, thick-walled, occasionally jagged wall, septate, constricted at the septum, terminal round, Conidiogenous cells 4–11 μm (x̅ = 7.5 μm, n = 20) long, 1–3 μm (x̅ = 2 μm, n = 20) wide, solitary or occurring in lateral clusters, cylindrical, subglobose to ampulliform. Conidia 2–3 × 1–2.5 μm (x̅ = 2.5 × 2 μm, n = 20), catenated, globose to ellipsoidal, hyaline, aseptate, smooth-walled. Culture characteristics: Colonies growing on PDA reach 15 mm in diameter after one week at 27 °C, and randomly sporulating within one month in PDA, above low convex, entire edge, fluffy, white. Reverse: yellowish brown. Sporulated within one month, visible the effuse, white clusters of mycelia with conidia, without pigments produced in PDA. Substratum: insect, Coleoptera (Tzean et al. 1997); Fragaria ananassa (Rigotti et al. 2003); Cosmopolites sordidus, Hypothenemus hampei, Leucoptera coffeella, Phyllophaga sp., Plutella xylostella (Delgado 2011); Vitis vinifera (Elena et al. 2018); Cannabis sativa (Punja et al. 2019); Coffea arabica (Serrato-Diaz et al. 2020). Distribution: Taiwan, China (Tzean et al. 1997); Switzerland (Rigotti et al. 2003); Nicaragua (Delgado 2011); Spain (Elena et al. 2018); Canada (Punja et al. 2019); Puerto Rico (Serrato-Diaz et al. 2020), China mainland (this study). Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-5 (Herb. KUN-HKAS 122655), living culture, KUMCC 21-0468. Genbank numbers: ITS: OM 670163, rpb1: OM 681324, rpb2: OM 681325, tef1-α: OM 681322, Bloc: OM 681323. Notes: Our isolate KUMCC 21-0468 fits with the characteristics of Beauveria bassiana by having an asexual morph producing globose to subglobose, catenated conidia, aseptate, hyaline, with globose to flask-shaped phialides; conidiogenous cells normally cluster on the terminals of branched hypha (Paul Vuillemin et al. 1912, Chen et al. 2013). The clade B. bassiana was analysed in detail by Khonsanit et al. (2020). The ITS BLASTn results of our isolate highly overlapped with Beauveria bassiana strains BCC 34332, ARSEF 751 and BBC12907, while rpb1, rpb2 and tef1-α show high matches to B. bassiana ARSEF 1040 (>99%). In addition, Bloc gene region showed 100% (1486/1492, 1 gap) similarity to B. bassiana (ARSEF 4934), and our tree topology of the ML and BI analyses also shows KUMCC 21-0468 is closely related to B. bassiana ARSEF 1040 with high statistical supports (Figure 4). Therefore, our isolate KUMCC 21-0468 is identified as Beauveria bassiana, which is a new host record based on morphological features and phylogenetic evidences., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 45, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Tzean, S. S., Hsieh, L. S. & Wu, W. J. (1997) Atlas of entomopathogenic fungi from Taiwan. Council of Agriculture 1: 214.","Rigotti, S., Gindrat, D. & Viret, O. (2003) Fungi from symptomless strawberry plants in Switzerland. Fungi from symptomless strawberry plants in Switzerland 42: 85 - 88. https: // doi. org / 10.14601 / Phytopathol _ Mediterr- 1690","Delgado, G. R. E. G. O. R. I. O. (2011) Nicaraguan fungi: a checklist of hyphomycetes. Mycotaxon 115: 534.","Elena, G., Bruez, E., Rey, P. & Luque, J. (2018) Microbiota of grapevine woody tissues with or without esca-foliar symptoms in northeast Spain. Phytopathologia Mediterranea 57: 425 - 438. https: // doi. org / 10.14601 / Phytopathol _ Mediterr- 23337","Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J. & Sutton, D. (2019) Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science 10: 1120. https: // doi. org / 10.3389 / fpls. 2019.01120","Serrato-Diaz, L. M., Marino, Y. A. & Bayman, P. (2020) Pathogens causing Anthracnose and fruit rots of coffee associated with the coffee berry borer and the entomopathogenic fungus Beauveria bassiana in Puerto Rico. Phytopathology 110: 1541 - 1552. https: // doi. org / 10.1094 / PHYTO- 02 - 20 - 0057 - R","Paul Vuillemin, M. (1912) Beauveria, nouveau genre de Verticilliacees. Bulletin de la societe botanique de france 59: 34 - 40. https: // doi. org / 10.1080 / 00378941.1912.10832379","Chen, M. J., Huang, B., Li, Z. Z., Spatafora, J. W. (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124: 301 - 308. https: // doi. org / 10.5248 / 124.301","Khonsanit, A., Luangsa-ard, J. J., Thanakitpipattana, D., Noisripoom, W., Chaitika, T. & Kobmoo, N. (2020) Cryptic diversity of the genus Beauveria with a new species from Thailand. Mycological Progress 19: 291 - 315. https: // doi. org / 10.1007 / s 11557 - 020 - 01557 - 9"]}
- Published
- 2022
- Full Text
- View/download PDF
19. Beauveria Vuill
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Cordycipitaceae ,Beauveria ,Taxonomy - Abstract
Beauveria Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) Index Fungorum number: IF 7346 Type species: Beauveria bassiana (Bals.-Criv.) Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) Notes: Beauveria was first described by Balsamo-Crivelli (1835) as Botrytis bassiana, but later the name was changed to Beauveria bassiana, and it was assigned as the type species of new independent genus Beauveria in Cordycipitaceae, Hypocreales (Paul Vuillemin 1912). This genus was characterized asexually by having globose bases and extended denticulate rachis, unicellular, ball-like, holoblastic conidia (et al. 2011, Chen et al. 2013), whereas the sexual morphs produce solitary, paired or gregarious stromata, cylindrical to clavate, yellowish to orange, cylindrical and filiform ascospores (Kepler et al. 2017). Beauveria bassiana has been reported as a pathogen of silkworms as early as 900 AD in Japan, and it was documented that the pathogen resulted in serious silkworm disease in Italy and France around 1800 (Samson et al. 2013). However, some Beauveria spp. also were reported as endophytes or saprobes associated with various plants (Vega et al. 2008, Moonjely et al. 2016, Imoulana et al. 2017, Chen et al. 2018, Khonsanit et al. 2020). Beauveria is a widespread anamorphic genus of entomopathogenic fungi, which includes ecologically and economically important species, for example, B. bassiana is widely utilized as a biological pest control agent in agriculture (Zimmermann 2007, Khonsanit et al. 2020)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 45, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Balsamo-Crivelli, G. (1835) Osservazione sopra una nuova spezie di Mucedinea del genere Botrytis. Biblioteca di Bibliografia Italiana 79: 125.","Paul Vuillemin, M. (1912) Beauveria, nouveau genre de Verticilliacees. Bulletin de la societe botanique de france 59: 34 - 40. https: // doi. org / 10.1080 / 00378941.1912.10832379","Costa, E. M. D., Pimenta, F. C., Luz, C., Oliveira, V. D., Oliveira, M., Bueno, E. & Petrofeza, S. (2011) Beauveria bassiana: quercetinase production and genetic diversity. Brazilian Journal of Microbiology 42: 12 - 21. https: // doi. org / 10.1590 / s 1517 - 83822011000100002","Chen, M. J., Huang, B., Li, Z. Z., Spatafora, J. W. (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124: 301 - 308. https: // doi. org / 10.5248 / 124.301","Kepler, R. M., Luangsa-ard, J. J., Hywel-Jones, N. L., Quandt, C. A., Sung, G. H., Rehner, S. A., Aime, M. C., Henkel, T. W., Sanjuan, T., Zare, R., Chen, M., Li, Z., Rossman, A. Y., Spatafora, J. W. & Shrestha, B. (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8: 335 - 353. https: // doi. org / 10.5598 / imafungus. 2017.08.02.08","Samson, R. A., Evans, H. C. & Latge, J. P. (2013) Atlas of entomopathogenic fungi. Springer Science & Business Media. pp. 703 - 705.","Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F. & Rehner, S. A. (2008) Entomopathogenic fungal endophytes. Biological Control 46: 72 - 82. https: // doi. org / 10.1016 / j. biocontrol. 2008.01.008","Moonjely, S., Barelli, L. & Bidochka, M. J. (2016) Insect pathogenic fungi as endophytes. Advances in Genetics 94: 107 - 135. https: // doi. org / 10.1016 / bs. adgen. 2015.12.004","Chen, W. H., Liu, M., Huang, Z. X., Yang, G. M., Han, Y. F., Liang, J. D. & Liang, Z. Q. (2018) Beauveria majiangensis, a new entomopathogenic fungus from Guizhou, China. Phytotaxa 333: 243 - 250. https: // doi. org / 10.11646 / phytotaxa. 333.2.8","Khonsanit, A., Luangsa-ard, J. J., Thanakitpipattana, D., Noisripoom, W., Chaitika, T. & Kobmoo, N. (2020) Cryptic diversity of the genus Beauveria with a new species from Thailand. Mycological Progress 19: 291 - 315. https: // doi. org / 10.1007 / s 11557 - 020 - 01557 - 9","Zimmermann, G. (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17: 553 - 596. https: // doi. org / 10.1080 / 09583150701309006"]}
- Published
- 2022
- Full Text
- View/download PDF
20. Colletotrichum Corda, Deutschlands
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Glomerellaceae ,Sordariomycetes ,Fungi ,Colletotrichum ,Biodiversity ,Glomerellales ,Taxonomy - Abstract
Colletotrichum Corda, Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3 (12): 41, tab. 21 (1831) Index Fungorum number: IF 7737 Type species: Colletotrichum lineola Corda, Deutschlands Flora (Nürnberg): 41 (1832) Notes: Colletotrichum was introduced by Corda (1831), with C. lineola as the type species, and it is the sole member of Glomerellaceae (Glomerellales, Sordariomycetes) (Hyde et al. 2020). The sexual morph of this genus is characterized by glomerella-like, semi-immersed to aerial, sphaerical, dark-brown ascomata, with or without setae, cylindrical asci contain clavate, elongate to fusiform, multi-septate ascospores (Jayawardena et al. 2016a).The anamorph of Colletotrichum is characterized by having hyaline conidiophores formed on aerial mycelium, cylindrical to clavate conidiogenous cells, conidia cylindrical to clavate, apically round, granular, sepatae or aseptate (Diao et al. 2017). Dean et al. (2012) proposed that Colletotrichum is one of the most common and important plant pathogenic genera generally causing diseases such as anthracnose, seedling blights, and red rot on various plants, include economical crops, around the world (Silva-Rojas & Ávila-Quezada 2011, Wang et al. 2021). Some Colletotrichum species were also introduced as endophytes and saprobes (Jayawardena et al. 2020). In addition, Colletotrichum species have been identified as human pathogens or entomopathogens (Damm et al. 2012, Natarajan et al. 2013, Talhinhas & Baroncelli et al. 2021). Currently, Index Fungorum (2022) lists over 1000 species epithets of Colletotrichum (Kirk et al. 2015)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 49, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Corda, A. C. J. (1831) Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3: 33 - 64.","Hyde, K. D., Jeewon, R., Chen, Y. J., Bhunjun, C. S., Calabon, M. S., Jiang, H. B., Lin, C. G., Norphanphoun, C., Sysouphanthong, P., Pem, D., Tibpromma, S., Zhang, Q., Doilom, M., Jayawardena, R. S., Liu, J. K., Maharachchikumbura, S. S. N., Phukhamsakda, C., Phookamsak, R., Al-Sadi, A. M., Thongklang, N., Wang, Y., Gaforov, Y., Jones, E. B. G. & Lumyong, S. (2020) The numbers of fungi: is the descriptive curve flattening?. Fungal Diversity 103: 219 - 271. https: // doi. org / 10.1007 / s 13225 - 020 - 00458 - 2.","Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S. & Yan, J. Y. (2016 a) Notes on currently accepted species of Colletotrichum. Mycosphere 7: 1192 - 1260. https: // doi. org / 10.5943 / mycosphere / si / 2 c / 9","Diao, Y. Z., Zhang, C., Liu, F., Wang, W. Z., Liu, L., Cai, L. & Liu, X. L. (2017) Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38: 20 - 37. https: // doi. org / 10.3767 / 003158517 X 692788","Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. D. (2012) The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology 13: 414 - 430. https: // doi. org / 10.1111 / j. 1364 - 3703.2011.00783. x","Silva-Rojas, H. V. & Avila-Quezada, G. D. (2011) Phylogenetic and morphological identification of Colletotrichum boninense: a novel causal agent of anthracnose in avocado. Plant Pathology 60: 899 - 908. https: // doi. org / 10.1111 / j. 1365 - 3059.2011.02452. x","Wang, W., de Silva, D. D., Moslemi, A., Edwards, J., Ades, P. K., Crous, P. W. & Taylor, P. W. (2021) Colletotrichum species causing anthracnose of citrus in Australia. Journal of Fungi 7: 47. https: // doi. org / 10.3390 / jof 7010047","Jayawardena, R. S., Hyde, K. D., Chen, Y. J., Papp, V., Palla, B., Papp, D., Bhunjun, C. S., Hurdeal, V. G., Senwanna, C., Manawasinghe, I. S., Harischandra, D. L., Gautam, A. K., Avasthi, S., Chuankid, B., Goonasekara, I. D., Hongsanan, S., Zeng, X. Y., Liyanage, K. K., Liu, N., Karunarathna, A., Hapuarachchi, K. K., Luangharn, T., Raspe, O., Brahmanage, R., Doilom, M., Lee, H. B., Mei, L., Jeewon, R., Huanraluek, N., Chaiwan, N., Stadler, M. & Wang, Y. (2020) One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76 - 100 Fungal Diversity 103: 87 - 218. https: // doi. org / 10.1007 / s 13225 - 020 - 00460 - 8","Damm, U., Cannon, P. F., Woudenberg, J. H. C. & Crous, P. W. (2012) The Colletotrichum acutatum species complex. Studies in mycology 73: 37 - 113. https: // doi. org / 10.3114 / sim 0010","Natarajan, S. V., Rekha, N. S., Sharda, R. D. & Mahalingam, N. (2013) Colletotrichum keratitis: a rare but definite clinical entity. Journal of clinical and diagnostic research 7: 1430. https: // doi. org / 10.7860 / JCDR / 2013 / 5513.3156","Talhinhas, P. & Baroncelli, R. (2021) Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity 110: 109 - 198. https: // doi. org / 10.1007 / s 13225 - 021 - 00491 - 9"]}
- Published
- 2022
- Full Text
- View/download PDF
21. Basidiobolus Eidam, Beitrage
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Fungi ,Basidiobolaceae ,Biodiversity ,Basidiobolales ,Basidiobolus ,Taxonomy ,Zygomycota - Abstract
Basidiobolus Eidam, Beiträge zur Biologie der Pflanzen 4: 194 (1886) Index Fungorum number: IF 20068 Type species: Basidiobolus ranarum Eidam, Beiträge zur Biologie der Pflanzen4: 194 (1886). Notes: Basidiobolus was introduced by Eidam, with B. ranarum as the type species (Eidam 1886). The zygospores are characterized as smooth and thick-walled, globose to subglose, with distinct conjugation beak (Burkitt 1964). Basidiobolus spp. and Conidiobolus spp. have been reported as human pathogens in the order Entomophthorales, and their zygospores differ by the presence or absence of conjugation beaks (Ribes et al. 2000, Yang et al. 2021). Basidiobolus ranarum can cause Zygomycosis to humans, and clinic symptoms include forming the firm and painless subcutaneous swellings on the trunk and extremities (Vilela & Mendoza 2018). In addition, Basidiobolus spp. have also caused diseases in horses and dogs (Owens et al. 1985, Greene et al. 2002). Moreover, B. ranarum as a saprotrophic fungus is commonly present in soil, decaying vegetables, gastrointestinal tracts of amphibians (frogs, and toads), reptiles (house geckoes, lizards, and chameleons), fish and bats (Van Overeem 1925, Burkitt et al. 1964, Gugnani & Okafor 1980, Mugerwa 1984, Okafor et al. 1984, Gugnani 1999)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 42, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Eidam, E. (1886) Basidiobolus, eine neue Gattung der Entomophthoraeeen. Beitrage zur Biologie der Pflanzen 4: 181 - 251.","Burkitt, D. P., Wilson, A. M. M. & Jelliffe, D. B. (1964) Subcutaneous phycomycosis: A review of 31 cases seen in Uganda. British Medical Journal 1: 1669 - 1672. https: // doi. org / 10.1136 / bmj. 1.5399. 1669","Ribes, J. A., Vanover-Sams, C. L. & Baker, D. J. (2000) Zygomycetes in human disease. Clinical microbiology reviews 13: 236 - 301. https: // doi. org / 10.1128 / CMR. 13.2.236","Yang, X., Li, Y., Zhou, X., Wang, Y., Geng, S., Liu, H., Yang, Q., Liu, X., Hiruma, M., Sugita, T., Ikeda, S. & Ogawa, H. (2021) Rhinofacial conidiobolomycosis caused by Conidiobolus coronatus in a Chinese rice farmer. Mycoses 53: 369 - 373. https: // doi. org / 10.1111 / j. 1439 - 0507.2009.01716. x","Vilela, R. & Mendoza, L. (2018) Human pathogenic entomophthorales. Clinical microbiology reviews 31: e 00014 - 18. https: // doi. org / 10.1128 / CMR. 00014 - 18","Owens, W. R., Miller, R. I., Haynes, P. F. & Snider, T. G. (1985) Phycomycosis caused by Basidiobolus haptosporus in two horses. Journal of the American Veterinary Medical Association 186: 703 - 705.","Greene, C. E., Brockus, C. W., Currin, M. P. & Jones, C. J. (2002) Infection with Basidiobolus ranarum in two dogs. Journal of the American Veterinary Medical Association 221: 528 - 532. https: // doi. org / 10.2460 / javma. 2002.221.528","Van Overeem, C. (1925) Uber ain merkwurdiges Vorkommen von Basidiobolus ranarum Eidam. Bulletin du Jardin botanique de Buitenzorg 7: 423 - 431.","Gugnani, H. C. & Okafor, J. I. (1980) Mycotic flora of the intestine and other internal organs of certain reptiles and amphibians with special reference to characterization of Basidiobolus isolates. Mycosen 23: 260 - 268. https: // doi. org / 10.1111 / j. 1439 - 0507.1980. tb 02605. x","Mugerwa, J. W. (1984) Entomophthoromycosis caused by Basidiobolus haptosporus. In: Waren, K. S. & Mahmoud, A. F. (Eds.) Tropical and geographic medicine. Vol. 1. New York: McGraw-Hill. pp. 968 - 970.","Okafor, J. I., TeStrake, D., Mushinsky, H. R. & Yangco, B. G. (1984) A Basidiobolus sp. and its association with reptiles and amphibians in Southern Florida. Sabouraudia 22: 47 - 51. https: // doi. org / 10.1080 / 00362178485380081","Gugnani, H. C. (1999) A review of zygomycosis due to Basidiobolus ranarum. European journal of epidemiology 15: 923 - 929. https: // doi. org / 10.1023 / A: 1007656818038"]}
- Published
- 2022
- Full Text
- View/download PDF
22. Basidiobolus ranarum Eidam, Beitrage
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Fungi ,Basidiobolaceae ,Biodiversity ,Basidiobolus ranarum ,Basidiobolales ,Basidiobolus ,Taxonomy ,Zygomycota - Abstract
Basidiobolus ranarum Eidam, Beiträge zur Biologie der Pflanzen 4: 194 (1886) (Figure 3) Index Fungorum number: IF224388 Saprobic or pathogenic on dead house gecko. Mycelium 10–20 μm wide (x̅ = 16 μm, n = 20), hyaline, septate, branched, tubular, sightly constriction at the septum, soon forming zygospores, the zygospores are (sexual spores) characterized by globose to subglobose 25–40 × 25–35 μm (x̅ = 34 × 31 μm, n = 20), wrapped in mycelium, with smooth and thick wall, 1–3.5 μm (x̅= 2.5 μm, n = 20) thickness, and wall layer thinner with the maturity, attaching a prominent conjugation beaks 10–15 μm wide, 8–11 high (Figure 3: f, g), hyaline (the microscopic features observed with cotton blue), verruculose to granulate in cellular inner, some zygospores form meristospores by cleavage of the cytoplasm (Figure 3: i–k). Culture characteristics: The pure culture was obtained from slimy tissue of gecko’s swollen forelimb, colonies circular, fast-growing on PDA at the room temperature, reaching around 40 mm diameter after two weeks, with an irritating odor, yellowish-brown to creamy grey, waxy, radially striated with barren crack at the centre, visible sparse mycelium tips at the margin, abundant global to subglobose zygospores (conidia) pave on folded surface; reverse sunken at the centre, yellowish to pale outwardly, without pigments produced from PDA. Substratum: Fish (Nickerson & Hutchison 1971); Amphibians (frogs, toads) (Coremans-Pelseneer 1973); house gecko faeces (Hemiolactylus sp.) (Claussen & Schmidt 2019); wall gecko (Hemiolactylus sp.) (Gugnani & Okafor 1980); bat (Chaturvedi et al. 1984); child/adult, human (Khan et al. 2001, Yusuf et al. 2003); dead Asian House Gecko (Hemiolactylus sp.) (this study). Distribution: Arkansas and Missouri, American (Nickerson & Hutchison 1971); Kinshasa, Zaire (Coremans-Pelseneer 1973); Nsukka, Nigeria (Gugnani & Okafor 1980); India (Chaturvedi et al. 1984, Khan et al. 2001); Jizan, Saudi Arabia (Yusuf et al. 2003); KwaZulu-Natal (South Africa) (Claussen & Schmidt 2019), Yunnan, China (this study) Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-4 (Herb. KUN-HKAS 122654), living culture, KUMCC 21-0467. Genebank numbers: ITS: OM 670164, LSU: OM 670161, mtSSU: OM 692370. Notes: Our isolate KUMCC 21-0467 shares similar characteristics with Basidiobolus magnus and B. ranarum in having globose to subglobose, smooth, thick-walled zygospore 20–60 μm in diameter, wrapped in mycelium, with a conjugation beak (Eidam 1886, Davis et al. 1994). The BLASTn results show the ITS gene region highly overlaps with B. magnus (ARSEF 1139) at 99.3% (668/673 bp, 0 gap), at 99% (664/672 bp, 0 gap) similarity with B. ranarum (ARSEF 260), and the LSU region indicates 99.8 % similarity (1010/1012bp, 0 gap) with B. ranarum (ARSEF 8303) and B. magnus (CBS 205.64). In addition, 667 bp of the mtSSU region was 100% similar to B. ranarum (AFTOL-ID 301); unfortunately, we were unable to amplify the rpb2 (7F/11aR) gene of our strain KUMCC 21-0467, The phylogenetic trees based on ITS, LSU, rpb2 and mtSSU show our isolate clusters with B. ranarum (ARSEF 260 and ATCC 14449) (Figure 2). Basidiobolus ranarum has also been found on frogs in Canada, and many infected cases in humans all over the world have been reported (Gugnani 1999, Al-Hatmi et al. 2021). As morphological characteristics examined largely overlap with B. ranarum, also supported by the phylogenetic evidences, our isolate is identified as Basidiobolus ranarum with a new country record for China; however, B. ranarum has previously been reported on wall gecko and house gecko faeces (Hemidactylus spp.) (Gugnani & Okafor 1980, Gugnani 1999, Claussen & Schmidt 2019)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 42, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Nickerson, M. A. & Hutchison, J. A. (1971) The distribution of the fungus Basidiobolus ranarum Eidam in fish, amphibians and reptiles. American Midland Naturalist 86: 500 - 502. https: // doi. org / 10.2307 / 2423642","Coremans-Pelseneer, J. (1973) Isolation of Basidiobolus meristosporus from natural sources. Mycopathologia 49: 173 - 176. https: // doi. org / 10.1080 / 00362178485380311","Claussen, M. & Schmidt, S. (2019) First-time isolation and quantification of Basidiobolus spp. from reptile faeces in KwaZulu-Natal (South Africa) using selective media. Mycoses 62: 298 - 305. https: // doi. org / 10.1111 / myc. 12868","Gugnani, H. C. & Okafor, J. I. (1980) Mycotic flora of the intestine and other internal organs of certain reptiles and amphibians with special reference to characterization of Basidiobolus isolates. Mycosen 23: 260 - 268. https: // doi. org / 10.1111 / j. 1439 - 0507.1980. tb 02605. x","Chaturvedi, V. P., Randhawa, H. S., Khan, Z. U., Singh, N., Kini, S. (1984) Prevalence of Basidiobolus ranarum Eidam in the intestinal tract of an insectivorous bat, Rhinopoma hardwickei hardwickei Gray, in Delhi. Sabouraudia 22: 185 - 189. https: // doi. org / 10.1080 / 00362178485380311","Khan, Z. U., Khoursheed, M., Makar, R., Al-Waheeb, S., Al-Bader, I., Al-Muzaini, A., Chandy, R. & Mustafa, A. S. (2001) Basidiobolus ranarum as an etiologic agent of gastrointestinal zygomycosis. Journal of clinical microbiology 39: 2360 - 2363. https: // doi. org / 10.1128 / JCM. 39.6.2360 - 2363.2001","Yusuf, N. W., Assaf, H. M. & Rotowa, N. A. (2003) Invasive gastrointestinal Basidiobolus ranarum infection in an immunocompetent child. The Pediatric infectious disease journal 22: 281 - 282. https: // doi. org / 10.1097 / 01. inf. 0000054020.84508.02","Eidam, E. (1886) Basidiobolus, eine neue Gattung der Entomophthoraeeen. Beitrage zur Biologie der Pflanzen 4: 181 - 251.","Davis, S. R., Ellis, D. H., Goldwater, P., Dimitriou, S. & Byard, R. (1994) First human culture-proven australian case of entomophthoromycosis caused by Basidiobolus ranarum. Journal of Medical & Veterinary Mycology 32: 225 - 230. https: // doi. org / 10.1080 / 02681219480000291","Gugnani, H. C. (1999) A review of zygomycosis due to Basidiobolus ranarum. European journal of epidemiology 15: 923 - 929. https: // doi. org / 10.1023 / A: 1007656818038","Al-Hatmi, A. M. S., Balkhair, A., Al-Busaidi, I., Sandoval-Denis, M., Al-Housni, S., Ba Taher, H., Hamdan Al-Shehhi, A., Raniga, S., Al- Shaibi, M., Al-Siyabi, T., Sybren de Hoog, G., Jacques, F. M., Al-Rawahi, A., Al-Muharrmi, Z., Al-Harrasi, A., Al-Adawi, B. (2021) Basidiobolus omanensis sp. nov. causing angioinvasive abdominal basidiobolomycosis. Journal of Fungi 7: 653. https: // doi. org / 10.3390 / jof 7080653"]}
- Published
- 2022
- Full Text
- View/download PDF
23. Taxonomic and Phylogenetic Insights into Novel Ascomycota from Forest Woody Litter
- Author
-
Wanasinghe, Dhanushka N., primary and Mortimer, Peter E., additional
- Published
- 2022
- Full Text
- View/download PDF
24. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions
- Author
-
Mortimer, Peter E., Le Roux, Marcellous R., Pérez-Fernández, Maria A., Benedito, Vagner A., Kleinert, Aleysia, Xu, Jianchu, and Valentine, Alexander J.
- Published
- 2013
- Full Text
- View/download PDF
25. Global patterns in endemicity and vulnerability of soil fungi
- Author
-
Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Djeugap Fovo, Joseph, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, R. Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Djeugap Fovo, Joseph, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, R. Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, and Abarenkov, Kessy
- Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here we used high-resolution sequencing to assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
- Published
- 2022
26. Global patterns in endemicity and vulnerability of soil fungi
- Author
-
Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Parn, Jaan, Opik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ulo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aida-M, Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marin, Cesar, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rahn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Macia-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, Jozsef, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Poldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Brathen, Kari Anne, Pritsch, Karin, Tchan, Kassim, I, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey, V, Polme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W. A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Koljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Parn, Jaan, Opik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ulo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aida-M, Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marin, Cesar, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rahn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Macia-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, Jozsef, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Poldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Brathen, Kari Anne, Pritsch, Karin, Tchan, Kassim, I, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey, V, Polme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W. A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Koljalg, Urmas, and Abarenkov, Kessy
- Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
- Published
- 2022
- Full Text
- View/download PDF
27. Global patterns in endemicity and vulnerability of soil fungi - superecoregions and endemicity
- Author
-
Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, and Abarenkov, Kessy
- Abstract
This repository contains additional data associated to Tedersoo et al. (2022) (https://doi.org/10.1111/gcb.16398).This repository contains those data necessary to rerun the superecoregion design and the endemicity analyses as well as vector maps on the endemicity and OTU richness of individual superecoregions. Further data associated with the same publication, regarding the vulnerability analysis, can be found here: 10.5281/zenodo.6983158., This repository contains additional data associated to Tedersoo et al. (2022) (https://doi.org/10.1111/gcb.16398).This repository contains those data necessary to rerun the superecoregion design and the endemicity analyses as well as vector maps on the endemicity and OTU richness of individual superecoregions. Further data associated with the same publication, regarding the vulnerability analysis, can be found here: 10.5281/zenodo.6983158. input.zip - Input data needed to run the analysis scripts provided [here](https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability/superecoregions_and_endemicity). The entire folder is to be copied in the working directory to run the pipeline. output.zip - Further data needed to run the analysis scripts provided [here](https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability/superecoregions_and_endemicity). The entire folder is to be copied in the working directory to run the pipeline. maps_otu_numbers_and_se_characteristics - vector maps of the superecoregions and the number of OTUs and endemic OTUs per region for different functional groups maps_traits_endemism - vector maps of endemicity indices per region f different functional groups 01_super_Ecoregions_numbers.pdf - vector map of the superecoregions used in the study numbered from 1 - 174. legend_01_super_ecoregions_numbers.csv - legend with superecoregion names for 01_super_Ecoregions_numbers.pdf. super_eoregions_results - Superecoregions with number of OTUs, number of endemic OTUs and endemicity indices in R data format, for further analyses and visualization super_ecoregions.shp - Superecoregions with number of OTUs, number of endemic OTUs and endemicity indices as shape file, for further analyses and visualization
- Published
- 2022
28. Global patterns in endemicity and vulnerability of soil fungi
- Author
-
Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Duarte Ritter, Camila, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, Garibay-Orijel, Roberto, Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Tedersoo, Leho, Mikryukov, Vladimir, Zizka, Alexander, Bahram, Mohammad, Hagh-Doust, Niloufar, Anslan, Sten, Prylutskyi, Oleh, Delgado-Baquerizo, Manuel, Maestre, Fernando T., Pärn, Jaan, Öpik, Maarja, Godoy, Roberto, Alkahtani, Saad, Rahimlou, Saleh, Dudov, Sergey V., Põlme, Sergei, Ghosh, Soumya, Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Nteziryayo, Vincent, Fedosov, Vladimir E., Onipchenko, Vladimir G., Yasanthika, W.A. Erandi, Lim, Young Woon, Soudzilovskaia, Nadejda A., Antonelli, Alexandre, Kõljalg, Urmas, Abarenkov, Kessy, Moora, Mari, Zobel, Martin, Espenberg, Mikk, Mander, Ülo, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Rinaldi, Andrea C., Verbeken, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Duarte Ritter, Camila, Nyamukondiwa, Casper, Sharp, Cathy, Marín, César, Gohar, Daniyal, Klavina, Darta, Sharmah, Dipon, Dai, Dong Qin, Nouhra, Eduardo, Biersma, Elisabeth Machteld, Rähn, Elisabeth, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Inga, Barrio, Isabel C., Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari Anne, Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Lateef, Adebola A., Tiirmann, Liis, Hansson, Linda, Lamit, Louis J., Saba, Malka, Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Piepenbring, Meike, Wijayawardene, Nalin, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Kohout, Petr, Nilsson, Rolf Henrik, Puusepp, Rasmus, Drenkhan, Rein, and Garibay-Orijel, Roberto
- Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
- Published
- 2022
29. Ten decadal advances in fungal biology leading towards human well-being
- Author
-
Mapook, Ausana, Hyde, Kevin D., Hassan, Khadija, Kemkuignou, Blondelle Matio, Cmokova, Adela, Surup, Frank, Kuhnert, Eric, Paomephan, Pathompong, Cheng, Tian, de Hoog, Sybren, Song, Yinggai, Jayawardena, Ruvishika S., Al-Hatmi, Abdullah M. S., Mahmoudi, Tokameh, Ponts, Nadia, Studt-Reinhold, Lena, Richard-Forget, Florence, Chethana, K. W. Thilini, Harishchandra, Dulanjalee L., Mortimer, Peter E., Li, Huili, Lumyong, Saisamorm, Aiduang, Worawoot, Kumla, Jaturong, Suwannarach, Nakarin, Bhunjun, Chitrabhanu S., Yu, Feng-Ming, Zhao, Qi, Schaefer, Doug, Stadler, Marc, Mapook, Ausana, Hyde, Kevin D., Hassan, Khadija, Kemkuignou, Blondelle Matio, Cmokova, Adela, Surup, Frank, Kuhnert, Eric, Paomephan, Pathompong, Cheng, Tian, de Hoog, Sybren, Song, Yinggai, Jayawardena, Ruvishika S., Al-Hatmi, Abdullah M. S., Mahmoudi, Tokameh, Ponts, Nadia, Studt-Reinhold, Lena, Richard-Forget, Florence, Chethana, K. W. Thilini, Harishchandra, Dulanjalee L., Mortimer, Peter E., Li, Huili, Lumyong, Saisamorm, Aiduang, Worawoot, Kumla, Jaturong, Suwannarach, Nakarin, Bhunjun, Chitrabhanu S., Yu, Feng-Ming, Zhao, Qi, Schaefer, Doug, and Stadler, Marc
- Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
- Published
- 2022
30. Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China
- Author
-
Tibpromma, Saowaluck, primary, Karunarathna, Samantha C., additional, Bhat, Jayarama D., additional, Suwannarach, Nakarin, additional, Stephenson, Steven L., additional, Elgorban, Abdallah M., additional, Al-Rejaie, Salim, additional, Xu, Jianchu, additional, and Mortimer, Peter E., additional
- Published
- 2022
- Full Text
- View/download PDF
31. Insight into the Taxonomic Resolution of the Pleosporalean Species Associated with Dead Woody Litter in Natural Forests from Yunnan, China
- Author
-
Wanasinghe, Dhanushka N., primary, Ren, Guang-Cong, additional, Xu, Jian-Chu, additional, Cheewangkoon, Ratchadawan, additional, and Mortimer, Peter E., additional
- Published
- 2022
- Full Text
- View/download PDF
32. The Impact of Drying Temperature on Basidiospore Size
- Author
-
Hu, Yuwei, primary, Karunarathna, Samantha C., additional, Li, Huili, additional, Galappaththi, Mahesh C. A., additional, Zhao, Chang-Lin, additional, Kakumyan, Pattana, additional, and Mortimer, Peter E., additional
- Published
- 2022
- Full Text
- View/download PDF
33. Heveicola xishuangbannaensis R. F. Xu, K. D. Hyde & Tibpromma 2022, sp. nov
- Author
-
Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E., and Tibpromma, Saowaluck
- Subjects
Heveicola xishuangbannaensis ,Ascomycota ,Tubeufiales ,Dothideomycetes ,Fungi ,Biodiversity ,Tubeufiaceae ,Heveicola ,Taxonomy - Abstract
Heveicola xishuangbannaensis R.F. Xu, K.D. Hyde & Tibpromma, sp. nov. (Fig. 2) Index Fungorum Number: IF558799; Facesoffungi Number: FOF10491 Holotype:��� HKAS 115759 Etymology:��� named after the location Xishuangbanna where the fungus was first discovered. Saprobic on rubber latex of Hevea brasiliensis. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies on natural substrate consisting of long, effuse, dark synnemata, scattered, somewhat hairy, mass of spores all over the surface. Synnemata 850���1000 �� 90���135 ��m (x��=943 �� 112 ��m, n=6), consisting of pale brown to dark brown, cylindrical, septate, unbranched, smooth-walled conidiophores. Conidia 15���40 �� 5���8 ��m (x��=26.6 �� 6.5 ��m, n=20), catenate, cylindrical, 0���4 to multiseptate (on PDA, conidia up to 20-septate), slightly constricted at median septum, rounded at both ends, formed in acropetal chains, initially hyaline, then pale brown to brown, often with a dark brown band at the septa, guttulate, thick- and rough-walled. Culture characteristics:��� cultures on PDA, colonies slow growing, umbonate, curled, smooth, edges brown, dark brown, mycelia 2.5���6 ��m wide, hyaline, septate, conidia 10���70 �� 5���12 ��m (x��=27.7 �� 6.8 ��m, n=30), oblong, up to 20-septate, pale brown to brown, thick- and rough-walled (Fig. 3). Material examined:��� CHINA. Yunnan Province: Xishuangbanna Tropical Botanical Garden, on old rubber latex (oozing from the trunk) of Hevea brasiliensis M��ll.Arg., 24 November 2020, Ruifang Xu, XSBNR-07 (HKAS 115759, holotype); ex-type living cultures KUMCC 21-0086. Notes: ��� In the phylogenetic analyses Heveicola xishuangbannaensis forms a monophyletic branch within Wiesneriomycetaceae with strong statistical support (Fig. 1). Heveicola xishuangbannaensis is similar to Speiropsis and Phalangispora in the shape and colour of the conidia, but it can differ in having a dark brown band at the septa and branches. No sexual morph has been reported so far in Wiesneriomycetaceae., Published as part of Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E. & Tibpromma, Saowaluck, 2022, Morphology and multi-gene phylogeny reveal a new fungal genus and species from Hevea brasiliensis latex in Yunnan, China, pp. 65-76 in Phytotaxa 530 (1) on pages 70-71, DOI: 10.11646/phytotaxa.530.1.5, http://zenodo.org/record/5823947
- Published
- 2022
- Full Text
- View/download PDF
34. Wiesneriomycetaceae Suetrong
- Author
-
Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E., and Tibpromma, Saowaluck
- Subjects
Ascomycota ,Fungi ,Wiesneriomycetaceae ,Biodiversity ,Wiesneriomycetales ,Taxonomy - Abstract
Key to genera in Wiesneriomycetaceae 1. With setae at the edge of the sporodochium or basal stroma............................................................................................................. 2 1. Without setae at the base of synnemata, sporodochium or stroma..................................................................................................... 4 2. Conidia, hyaline, unbranched............................................................................................................................................................. 3 2. Conidia pale-brown, toruliform, with two to three branches...................................................................................... Phalangispora 3. Conidia cylindrical connected by short isthmi separating each................................................................................ Wiesneriomyces 3. Conidia subcylindrical joined by a narrow isthmus........................................................................................... Parawiesneriomyces 4. Conidia hyaline................................................................................................................................................................................... 5 4. Conidia coloured................................................................................................................................................................................ 6 5. Conidia aggregated into heads, narrowly fusiform to lanceolate, septate.......................................................... Pseudogliophragma 5. Conidia aggregated in heads, filiform, with an isthmus at the central septum tapered towards each end..................... Setosynnema 6. Conidia pale to mid-brown, with three to five radiate arms................................................................................................ Speiropsis 6. Conidia brown, 1���4 to multiseptate, with dark brown band at the septa............................................................................ Heveicola, Published as part of Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E. & Tibpromma, Saowaluck, 2022, Morphology and multi-gene phylogeny reveal a new fungal genus and species from Hevea brasiliensis latex in Yunnan, China, pp. 65-76 in Phytotaxa 530 (1) on page 72, DOI: 10.11646/phytotaxa.530.1.5, http://zenodo.org/record/5823947
- Published
- 2022
- Full Text
- View/download PDF
35. Heveicola R. F. Xu, K. D. Hyde & Tibpromma 2022, gen. nov
- Author
-
Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E., and Tibpromma, Saowaluck
- Subjects
Ascomycota ,Tubeufiales ,Dothideomycetes ,Fungi ,Biodiversity ,Tubeufiaceae ,Heveicola ,Taxonomy - Abstract
Heveicola R.F. Xu, K.D. Hyde & Tibpromma, gen. nov. Index Fungorum Number: IF558798; Facesoffungi Number: FOF10490 Type species:��� Heveicola xishuangbannaensis R.F. Xu, K.D. Hyde & Tibpromma Etymology:��� named after the host genus, Hevea. Saprobic on decaying wood, leaves and rubber latex in terrestrial habitats. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies on natural substrate, mass of spores all over the surface. Conidiophores macronematous, synnematous, erect, brown to dark brown, cylindrical, septate. Conidia catenate, ellipsoidal or oblong, 0���4 to multi-septate, slightly constricted at median septum, rounded at both ends, formed in acropetal chains, often with a dark brown band at the septa, initially hyaline, pale brown to brown. Notes:��� Asexual morphs of all genera in Wiesneriomycetaceae have conidia produced in acropetal chains. The new genus also has chains of septate conidia, fitting the concept of Wiesneriomycetaceae. Heveicola differs morphologically from other members in Wiesneriomycetaceae (see key below)., Published as part of Xu, Ruifang, Hyde, Kevin D., Karunarathna, Samantha C., Xu, Jian-Chu, Mortimer, Peter E. & Tibpromma, Saowaluck, 2022, Morphology and multi-gene phylogeny reveal a new fungal genus and species from Hevea brasiliensis latex in Yunnan, China, pp. 65-76 in Phytotaxa 530 (1) on pages 69-70, DOI: 10.11646/phytotaxa.530.1.5, http://zenodo.org/record/5823947
- Published
- 2022
- Full Text
- View/download PDF
36. Editorial: Fungal Systematics and Biogeography
- Author
-
Wanasinghe, Dhanushka N., primary, Mortimer, Peter E., additional, and Bezerra, Jadson D. P., additional
- Published
- 2022
- Full Text
- View/download PDF
37. Taxonomy and phylogeny of the novel rhytidhysteron-like collections in the Greater Mekong Subregion
- Author
-
Ren, Guang-Cong, primary, Wanasinghe, Dhanushka N., additional, Jeewon, Rajesh, additional, Monkai, Jutamart, additional, Mortimer, Peter E., additional, Hyde, Kevin D., additional, Xu, Jian-Chu, additional, and Gui, Heng, additional
- Published
- 2022
- Full Text
- View/download PDF
38. Three new species of Iodosphaeria (Xylariomycetidae): I. chiayiensis, I. jinghongensis and I. thailandica
- Author
-
Dissanayake, Lakmali S., primary, Marasinghe, Diana S., additional, Samarakoon, Milan C., additional, Maharachchikumbura, Sajeewa S.N., additional, Mortimer, Peter E., additional, Hyde, Kevin D., additional, Kuo, Chang-Hsin, additional, and Kang, Ji-Chuan, additional
- Published
- 2022
- Full Text
- View/download PDF
39. A review of bambusicolous Ascomycota in China with an emphasis on species richness in southwest China
- Author
-
Jiang, Hongbo, primary, Phookamsak, Rungtiwa, additional, Hongsanan, Sinang, additional, Bhat, Darbhe J., additional, Mortimer, Peter E., additional, Suwannarach, Nakarin, additional, Kakumyan, Pattana, additional, and Xu, Jianchu, additional
- Published
- 2022
- Full Text
- View/download PDF
40. Juxtiphoma yunnanensis Yasanthika, G. C. Ren & K. D. Hyde 2021, sp. nov
- Author
-
Yasanthika, Erandi, Wanasinghe, Dhanushka N., Ren, Guang-Cong, Karunarathna, Samantha C., Tennakoon, Danushka S., Monkai, Jutamart, Gui, Heng, Mortimer, Peter E., Lumyong, Saisamorn, and Hyde, Kevin D.
- Subjects
Ascomycota ,Dothideomycetes ,Juxtiphoma ,Fungi ,Biodiversity ,Didymellaceae ,Pleosporales ,Taxonomy ,Juxtiphoma yunnanensis - Abstract
Juxtiphoma yunnanensis Yasanthika, G.C. Ren & K.D. Hyde, sp. nov. Index Fungorum number: IF558129, Facesoffungi number: FoF09617, FIGURE 4. Etymology—The specific epithet “ yunnanensis ” refers to Yunnan Province (China), where the species was collected. Holotype — HKAS 107656 Culture characteristics:— Colonies on PDA reach to 4–6 cm diam. after 21 days at 25 °C, becoming flattened with irregular to lobate margins. Mycelium have a cottony to wooly surface, center is smoke grey to olivaceous grey becoming pale brown to brownish yellow at margin; reverse dark grey to black at the centre, with pale brown to brownish yellow at the edge. Hyphae 2–5 μm wide, aerial to semi-immersed and branched, hyaline aseptate, immature hyphae become pale brown septate when mature. Chlamydospores produced from mature hyphae, terminal or intercalary, solitary, or in simple or branched chains, barrel-shaped, globose to subglobose or ellipsoidal to elongated, pale brown to brown, becoming 2–8 guttulate when mature, 4–11 × 3–7 µm (x̄ = 7 × 5 μm, n = 20). Material examined:— China, Yunnan Province, Kunming City, 25.047865N 102.721724 E, industrial wastecontaminated soil, 16 December 2019, G.C. Ren (HKAS 107656, holotype); ex-type living culture, KUMCC 20- 0227. Known hosts and substrates:— Soil Known distribution:— China GenBank Accession No:— ITS: MW 600334, LSU: MW 587029, btub: MW 602383, rpb 2: MW 603001. Notes:— Juxtiphoma is a poorly studied genus with only two species viz. J. eupyrena and J. kolkmaniorum (Species Fungorum 2021). Juxtiphoma eupyrena has dark green colonies becoming black due to chlamydospore formation on Oatmeal Agar (OA), while J. kolkmaniorum has an isabelline to olivaceous colony. Juxtiphoma yunnanensis (KUMCC 20-0227) has smoke grey to olivaceous grey colonies becoming pale brown to brownish yellow at the margin on PDA. Both J. kolkmaniorum and J. eupyrena have conidia-bearing pycnidia on cultures in OA (Valenzuela-Lopez et al. 2018, Hou et al. 2020). However, we did not see any pycnidial formation of Juxtiphoma yunnanensis (KUMCC 20-0227) colonies in PDA. Nevertheless, Juxtiphoma yunnanensis (KUMCC 20-0227) has abundant chlamydospores formation on PDA culture, which is a common character to Juxtiphoma (Valenzuela-Lopez et al. 2018, Hou et al. 2020). The combined phylogenetic analysis (ITS-LSU- btub -rpb 2) indicates that our new strain constitutes a distant lineage from Juxtiphoma eupyrena and J. kolkmaniorum with 99% ML, 1.00 BYPP statistical support (FIGURE 1). We introduce this novel lineage as Juxtiphoma yunnanensis sp. nov., which was isolated from industrial waste-contaminated soil in Kunming City, Yunnan Province, China., Published as part of Yasanthika, Erandi, Wanasinghe, Dhanushka N., Ren, Guang-Cong, Karunarathna, Samantha C., Tennakoon, Danushka S., Monkai, Jutamart, Gui, Heng, Mortimer, Peter E., Lumyong, Saisamorn & Hyde, Kevin D., 2021, Taxonomic and phylogenetic insights into novel Ascomycota from contaminated soils in Yunnan, China, pp. 203-225 in Phytotaxa 513 (3) on pages 212-214, DOI: 10.11646/phytotaxa.513.3.2, http://zenodo.org/record/5312444, {"references":["Species Fungorum. (2021) Available from: https: // www. speciesfungorum. org / Names / Names. asp (accessed 12 January 2021)","Valenzuela-Lopez, N., Cano-Lira, J. F., Guarro, J., Sutton, D. A., Wiederhold, N., Crous, P. W. & Stchigel, A. M. (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology 90: 1 - 69. https: // doi. org / 10.1016 / j. simyco. 2017.11.003","Hou, L., Hernandez-Restrepo, M., Groenewald, J. Z., Cai, L. & Crous, P. W. (2020) Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys 65: 49 - 99. https: // doi. org / 10.3897 / mycokeys. 65.47704"]}
- Published
- 2021
- Full Text
- View/download PDF
41. Restoration: ʼGarden of Edenʼ unrealistic
- Author
-
Breed, Martin F., Lowe, Andrew J., and Mortimer, Peter E.
- Published
- 2016
- Full Text
- View/download PDF
42. Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion
- Author
-
Luangharn, Thatsanee, primary, Karunarathna, Samantha C., additional, Dutta, Arun Kumar, additional, Paloi, Soumitra, additional, Promputtha, Itthayakorn, additional, Hyde, Kevin D., additional, Xu, Jianchu, additional, and Mortimer, Peter E., additional
- Published
- 2021
- Full Text
- View/download PDF
43. Yuxiensis granularis gen. et sp. nov., a Novel Quellkörper-Bearing Fungal Taxon Added to Scortechiniaceae and Inclusion of Parasympodiellaceae in Coronophorales Based on Phylogenetic Evidence
- Author
-
Bundhun, Digvijayini, primary, Wanasinghe, Dhanushka N., additional, Maharachchikumbura, Sajeewa S. N., additional, Bhat, Darbhe J., additional, Huang, Shi-Ke, additional, Lumyong, Saisamorn, additional, Mortimer, Peter E., additional, and Hyde, Kevin D., additional
- Published
- 2021
- Full Text
- View/download PDF
44. A Taxonomic Appraisal of Bambusicolous Fungi in Occultibambusaceae (Pleosporales, Dothideomycetes) with New Collections from Yunnan Province, China
- Author
-
Jiang, Hong-Bo, primary, Phookamsak, Rungtiwa, additional, Hyde, Kevin D., additional, Mortimer, Peter E., additional, Xu, Jian-Chu, additional, Kakumyan, Pattana, additional, Karunarathna, Samantha C., additional, and Kumla, Jaturong, additional
- Published
- 2021
- Full Text
- View/download PDF
45. Novel saprobic Hermatomyces species (Hermatomycetaceae, Pleosporales) from China (Yunnan Province) and Thailand
- Author
-
Ren, Guang-Cong, primary, Wanasinghe, Dhanushka N., additional, Monkai, Jutamart, additional, Mortimer, Peter E., additional, Hyde, Kevin D., additional, Xu, Jian-Chu, additional, Pang, Aimin, additional, and Gui, Heng, additional
- Published
- 2021
- Full Text
- View/download PDF
46. Acrocordiella O.E.Eriksson 1982
- Author
-
Dissanayake, Lakmali S., Maharachchikumbura, Sajeewa S. N., Mortimer, Peter E., Hyde, Kevin D., and Kang, Ji-Chuan
- Subjects
Eurotiomycetes ,Pyrenulales ,Requienellaceae ,Ascomycota ,Fungi ,Biodiversity ,Acrocordiella ,Taxonomy - Abstract
Key to species in Acrocordiella 1 Ascospores only transversely septate................................................................................................................................................ 2 1 Ascospores muriform................................................................................................................................................. A. yunnanensis 2 Clypeus present around the ostiole................................................................................................................................ A. omanensis 2 Clypeus absent around the ostiole....................................................................................................................................... A. occulta, Published as part of Dissanayake, Lakmali S., Maharachchikumbura, Sajeewa S. N., Mortimer, Peter E., Hyde, Kevin D. & Kang, Ji-Chuan, 2021, Acrocordiella yunnanensis sp. nov. (Requienellaceae, Xylariales) from Yunnan, China, pp. 103-113 in Phytotaxa 487 (2) on page 108, DOI: 10.11646/phytotaxa.487.2.1, http://zenodo.org/record/5754211
- Published
- 2021
- Full Text
- View/download PDF
47. Fungal Community Composition and Diversity Vary With Soil Horizons in a Subtropical Forest
- Author
-
Luo, Xia, primary, Liu, Kezhong, additional, Shen, Yuyu, additional, Yao, Guojing, additional, Yang, Wenguang, additional, Mortimer, Peter E., additional, and Gui, Heng, additional
- Published
- 2021
- Full Text
- View/download PDF
48. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
- Author
-
Tedersoo, Leho, Mikryukov, Vladimir, Anslan, Sten, Bahram, Mohammad, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Antonelli, Alexandre, Rinaldi, Andrea C., Verbeken,, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, Marín, Dai, D.Q., Gohar, Daniyal, Sharmah, Dipon, Biersma, Elisabeth Machteld, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Gates, Genevieve, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Indrek, Hiiesalu, Inga, Zettur, Irma, Barrio, Isabel C., Pärn, Jaan, Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Sarapuu, Joosep, Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Monkai, Jutamart, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari A., Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Adebola, Lateef A., Lamit, Louis J., Saba, Malka, da Silva Cáceres, Marcela E., Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Bálint, Miklós, Wijayawardene, Nalin, Hagh-Doust, Niloufar, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Nilsson, R. Henrik, Puusepp, Rasmus, Casique-Valdés, Rebeca, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alfarraj, Saleh, Rahimlou, Saleh, Põlme, Sergei, Dudov, Sergey V., Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Young, Woon Lim, Piepenbring, Meike, Klavina, Darta, Kõljalg, Urmas, Abarenkov, Kessy, Tedersoo, Leho, Mikryukov, Vladimir, Anslan, Sten, Bahram, Mohammad, Khalid, Abdul Nasir, Corrales, Adriana, Agan, Ahto, Vasco-Palacios, Aída-M., Saitta, Alessandro, Antonelli, Alexandre, Rinaldi, Andrea C., Verbeken,, Annemieke, Sulistyo, Bobby P., Tamgnoue, Boris, Furneaux, Brendan, Ritter, Camila Duarte, Nyamukondiwa, Casper, Sharp, Cathy, Marín, Marín, Dai, D.Q., Gohar, Daniyal, Sharmah, Dipon, Biersma, Elisabeth Machteld, Cameron, Erin K., De Crop, Eske, Otsing, Eveli, Davydov, Evgeny A., Albornoz, Felipe E., Brearley, Francis Q., Buegger, Franz, Gates, Genevieve, Zahn, Geoffrey, Bonito, Gregory, Hiiesalu, Indrek, Hiiesalu, Inga, Zettur, Irma, Barrio, Isabel C., Pärn, Jaan, Heilmann-Clausen, Jacob, Ankuda, Jelena, Kupagme, John Y., Sarapuu, Joosep, Maciá-Vicente, Jose G., Fovo, Joseph Djeugap, Geml, József, Alatalo, Juha M., Alvarez-Manjarrez, Julieta, Monkai, Jutamart, Põldmaa, Kadri, Runnel, Kadri, Adamson, Kalev, Bråthen, Kari A., Pritsch, Karin, Tchan, Kassim I., Armolaitis, Kęstutis, Hyde, Kevin D., Newsham, Kevin K., Panksep, Kristel, Adebola, Lateef A., Lamit, Louis J., Saba, Malka, da Silva Cáceres, Marcela E., Tuomi, Maria, Gryzenhout, Marieka, Bauters, Marijn, Bálint, Miklós, Wijayawardene, Nalin, Hagh-Doust, Niloufar, Yorou, Nourou S., Kurina, Olavi, Mortimer, Peter E., Meidl, Peter, Nilsson, R. Henrik, Puusepp, Rasmus, Casique-Valdés, Rebeca, Drenkhan, Rein, Garibay-Orijel, Roberto, Godoy, Roberto, Alfarraj, Saleh, Rahimlou, Saleh, Põlme, Sergei, Dudov, Sergey V., Mundra, Sunil, Ahmed, Talaat, Netherway, Tarquin, Henkel, Terry W., Roslin, Tomas, Fedosov, Vladimir E., Onipchenko, Vladimir G., Erandi Yasanthika, W.A., Young, Woon Lim, Piepenbring, Meike, Klavina, Darta, Kõljalg, Urmas, and Abarenkov, Kessy
- Abstract
Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
- Published
- 2021
49. Climate-Fungal Pathogen Modeling Predicts Loss of Up to One-Third of Tea Growing Areas
- Author
-
Tibpromma, Saowaluck, primary, Dong, Yang, additional, Ranjitkar, Sailesh, additional, Schaefer, Douglas A., additional, Karunarathna, Samantha C., additional, Hyde, Kevin D., additional, Jayawardena, Ruvishika S., additional, Manawasinghe, Ishara S., additional, Bebber, Daniel P., additional, Promputtha, Itthayakorn, additional, Xu, Jianchu, additional, Mortimer, Peter E., additional, and Sheng, Jun, additional
- Published
- 2021
- Full Text
- View/download PDF
50. Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania
- Author
-
Tibpromma, Saowaluck, primary, Zhang, Lu, additional, Karunarathna, Samantha C., additional, Du, Tian-Ye, additional, Phukhamsakda, Chayanard, additional, Rachakunta, Munikishore, additional, Suwannarach, Nakarin, additional, Xu, Jianchu, additional, Mortimer, Peter E., additional, and Wang, Yue-Hu, additional
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.