1. From dose reduction to contrast maximization: can deep learning amplify the impact of contrast media on brain MR image quality? A reader study
- Author
-
Bône, Alexandre, Ammari, Samy, Menu, Yves, Balleyguier, Corinne, Moulton, Eric, Chouzenoux, Emilie, Volk, Andreas, Garcia, Gabriel C.T.E., Nicolas, François, Robert, Philippe, Rohé, Marc-Michel, Lassau, Nathalie, Laboratoire Guerbet, LaBoratoire d'Imagerie biOmédicale MultimodAle Paris-Saclay (BIOMAPS), Service Hospitalier Frédéric Joliot (SHFJ), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), OPtimisation Imagerie et Santé (OPIS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay, Chouzenoux, Emilie, and Laboratoire Guerbet / Guerbet Research
- Subjects
brain neoplasms ,Diagnostic imaging ,multiparametric MRI ,deep learning ,image enhancement ,contrast media ,lesion detection ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; ObjectivesThe aim of this study is to evaluate a deep learning method designed to increase the contrast-to-noise ratio in contrast-enhanced gradient echo T1-weighted brain MRI acquisitions. The processed images are quantitatively evaluated in terms of lesion detection performance.Materials and methodsA total of 250 multiparametric brain MRIs, acquired between November 2019 and March 2021 at Gustave Roussy Cancer Campus (Villejuif, France), were considered for inclusion in this retrospective monocentric study. Independent training (107 cases, age 55y±14, 58 women) and test (79 cases, age 59y±14, 41 women) samples were defined. Patients had glioma, brain metastasis, meningioma, or no enhancing lesion. Gradient echo and turbo spin echo with variable flip angles postcontrast T1 sequences were acquired in all cases. For the cases that formed the training sample, “low-dose” postcontrast gradient echo T1 images using 0.025mmol/kg injections of contrast agent were also acquired. A deep neural network was trained to synthetically enhance the low-dose T1 acquisitions, taking standard-dose T1 MRI as reference. Once trained, the contrast enhancement network was used to process the test gradient echo T1 images. A read was then performed by two experienced neuroradiologists to evaluate the original and processed T1 MRI sequences in terms of contrast enhancement and lesion detection performance, taking the turbo spin echo sequences as reference.ResultsThe processed images were superior to the original gradient echo and reference turbo spin echo T1 sequences in terms of contrast-to-noise ratio (44.5 versus 9.1 and 16.8, p.99). The same effect was observed when considering all lesions larger than 5mm: sensitivity increased from 70% to 85% (p
- Published
- 2022
- Full Text
- View/download PDF