1. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation
- Author
-
Valentina Vellecco, Altaany Zaid, Robert Feil, Rui Wang, Katia Karalis, Mariarosaria Bucci, Anna Cantalupo, Andreas Papapetropoulos, Giuseppe Cirino, Panagiotis Giannogonas, Zongmin Zhou, Sandeep Dhayade, Bucci, Mariarosaria, Papapetropoulos, A, Vellecco, Valentina, Zhou, Z, Zaid, A, Giannogonas, P, Cantalupo, A, Dhayade, S, Karalis, Kp, Wang, R, Feil, R, and Cirino, Giuseppe
- Subjects
Male ,Anatomy and Physiology ,Mouse ,lcsh:Medicine ,Vasodilation ,030204 cardiovascular system & hematology ,Signal transduction ,Cardiovascular ,Cardiovascular System ,Biochemistry ,Mice ,0302 clinical medicine ,Molecular cell biology ,Hydrogen Sulfide ,lcsh:Science ,Mesenteric arteries ,Aorta ,Cells, Cultured ,Mice, Knockout ,Peripheral Vascular Diseases ,0303 health sciences ,Multidisciplinary ,Cystathionine gamma-lyase ,Neurochemistry ,Animal Models ,Potassium channel ,medicine.anatomical_structure ,Hypertension ,cardiovascular system ,Medicine ,Female ,Neurochemicals ,Research Article ,medicine.medical_specialty ,Cell Physiology ,Endothelium ,Signaling in cellular processes ,Biology ,Nitric Oxide ,Cardiovascular Pharmacology ,03 medical and health sciences ,Model Organisms ,Vascular Biology ,Internal medicine ,medicine ,Cyclic GMP-Dependent Protein Kinases ,Animals ,Phosphodiesterase inhibitor ,Rats, Wistar ,Protein kinase A ,030304 developmental biology ,Cyclic Nucleotide Phosphodiesterases, Type 5 ,lcsh:R ,Phosphodiesterase 5 Inhibitors ,equipment and supplies ,Rats ,Endocrinology ,cGMP signaling ,lcsh:Q ,Endothelium, Vascular ,cGMP-dependent protein kinase - Abstract
A growing body of evidence suggests that hydrogen sulfide (H₂S) is a signaling molecule in mammalian cells. In the cardiovascular system, H₂S enhances vasodilation and angiogenesis. H₂S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K(ATP)); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H₂S-induced vasorelaxation. The effect of H₂S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H₂S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H₂S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H₂S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H₂S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H₂S production) were reduced in vessels of PKG-I knockout mice (PKG-I⁻/⁻). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I⁻/⁻, suggesting that there is a cross-talk between K(ATP) and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.
- Published
- 2012