14 results on '"Iraola, Aitor"'
Search Results
2. Groundwater age dating in fractured rock using [formula omitted]He data
- Author
-
Trinchero, Paolo, Sidborn, Magnus, Puigdomenech, Ignasi, Iraola, Aitor, Bosbach, Dirk, and Deissmann, Guido
- Published
- 2019
- Full Text
- View/download PDF
3. Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Aspo Hard Rock Laboratory (Sweden)
- Author
-
Soler, Josep M., Meng, Shuo, Moreno, Luis, Neretnieks, Ivars, Liu, Longcheng, Kekalainen, Pekka, Hokr, Milan, Riha, Jakub, Vetesnik, Ales, Reimitz, Dan, Visnak, Jakub, Vopalka, Dusan, Krohn, Klaus-Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Deissmann, Guido, Bosbach, Dirk, Park, Dong Kyu, Ji, Sung-Hoon, Gvozdik, Libor, Milicky, Martin, Polak, Michal, Gylling, Bjorn, and Lanyon, G. William
- Published
- 2022
- Full Text
- View/download PDF
4. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock
- Author
-
Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Gylling, Björn, Selroos, Jan-Olof, Molinero, Jorge, Svensson, Urban, Bosbach, Dirk, and Deissmann, Guido
- Published
- 2017
- Full Text
- View/download PDF
5. Predictive and Inverse Modeling of a Radionuclide Diffusion Experiment in Crystalline Rock at ONKALO (Finland)
- Author
-
Soler, Josep M., Kekäläinen, Pekka, Pulkkanen, Veli Matti, Moreno, Luis, Iraola, Aitor, Trinchero, Paolo, Hokr, Milan, Říha, Jakub, Havlová, Václava, Trpkošová, Dagmar, Vetešník, Aleš, Vopálka, Dušan, Gvoždík, Libor, Milický, Martin, Polák, Michal, Fukatsu, Yuta, Ito, Tsuyoshi, Tachi, Yukio, Svensson, Urban, Park, Dong Kyu, Ji, Sung Hoon, Gylling, Björn, Lanyon, G. William, Soler, Josep M., Kekäläinen, Pekka, Pulkkanen, Veli Matti, Moreno, Luis, Iraola, Aitor, Trinchero, Paolo, Hokr, Milan, Říha, Jakub, Havlová, Václava, Trpkošová, Dagmar, Vetešník, Aleš, Vopálka, Dušan, Gvoždík, Libor, Milický, Martin, Polák, Michal, Fukatsu, Yuta, Ito, Tsuyoshi, Tachi, Yukio, Svensson, Urban, Park, Dong Kyu, Ji, Sung Hoon, Gylling, Björn, and Lanyon, G. William
- Abstract
The REPRO-TDE test was performed at a depth of about 400 m in the ONKALO underground research facility in Finland. Synthetic groundwater containing radionuclide tracers [tritiated water tracer (HTO), 36Cl, 22Na, 133Ba, and 134Cs] was circulated for about 4 years in a packed-off interval of the injection borehole. Tracer activities were additionally monitored in two observation boreholes. The test was the subject of a modeling exercise by the SKB GroundWater Flow and Transport of Solutes Task Force. Eleven teams participated in the exercise, using different model concepts and approaches. Predictive model calculations were based on laboratory-based information concerning porosities, diffusion coefficients, and sorption partition coefficients. After the experimental results were made available, the teams were able to revise their models to reproduce the observations. General conclusions from these back-analysis calculations include the need for reduced effective diffusion coefficients for 36Cl compared to those applicable to HTO (anion exclusion), the need to implement weaker sorption for 22Na compared to results from laboratory batch sorption experiments, and the observation of large differences between the theoretical initial concentrations for the strongly sorbing 133Ba and 134Cs, and the first measured values a few hours after tracer injection. Different teams applied different concepts, concerning mainly the implementation of isotropic versus anisotropic diffusion, or the possible existence of borehole disturbed zones around the different boreholes. The role of microstructure was also addressed in two of the models., QC 20231107
- Published
- 2023
- Full Text
- View/download PDF
6. Predictive and Inverse Modeling of a Radionuclide Diffusion Experiment in Crystalline Rock at ONKALO (Finland)
- Author
-
0000-0003-0741-249X, 0000-0002-2514-3695, 0000-0001-8241-2225, 0000-0003-1351-2788, 0000-0003-3793-3341, 0000-0002-0106-0502, 0000-0003-0424-3862, 0000-0001-7443-431X, 0000-0001-9659-5317, 0000-0001-7224-2103, 0000-0002-2506-4049, 0000-0002-2464-6725, 0000-0002-1169-4170, Soler, Josep M., Kekäläinen, Pekka, Pulkkanen, Veli Matti, Moreno, Luis, Iraola, Aitor, Trinchero, Paolo, Hokr, Milan, Říha, Jakub, Havlová, Václava, Trpkošová, Dagmar, Vetešník, Aleš, Vopálka, Dušan, Gvoždík, Libor, Milický, Martin, Polák, Michal, Fukatsu, Yuta, Ito, Tsuyoshi, Tachi, Yukio, Svensson, Urban, Park, Dong Kyu, Ji, Sung Hoon, Gylling, Björn, Lanyon, G. William, 0000-0003-0741-249X, 0000-0002-2514-3695, 0000-0001-8241-2225, 0000-0003-1351-2788, 0000-0003-3793-3341, 0000-0002-0106-0502, 0000-0003-0424-3862, 0000-0001-7443-431X, 0000-0001-9659-5317, 0000-0001-7224-2103, 0000-0002-2506-4049, 0000-0002-2464-6725, 0000-0002-1169-4170, Soler, Josep M., Kekäläinen, Pekka, Pulkkanen, Veli Matti, Moreno, Luis, Iraola, Aitor, Trinchero, Paolo, Hokr, Milan, Říha, Jakub, Havlová, Václava, Trpkošová, Dagmar, Vetešník, Aleš, Vopálka, Dušan, Gvoždík, Libor, Milický, Martin, Polák, Michal, Fukatsu, Yuta, Ito, Tsuyoshi, Tachi, Yukio, Svensson, Urban, Park, Dong Kyu, Ji, Sung Hoon, Gylling, Björn, and Lanyon, G. William
- Abstract
The REPRO-TDE test was performed at a depth of about 400 m in the ONKALO underground research facility in Finland. Synthetic groundwater containing radionuclide tracers [tritiated water tracer (HTO), 36Cl, 22Na, 133Ba, and 134Cs] was circulated for about 4 years in a packed-off interval of the injection borehole. Tracer activities were additionally monitored in two observation boreholes. The test was the subject of a modeling exercise by the SKB GroundWater Flow and Transport of Solutes Task Force. Eleven teams participated in the exercise, using different model concepts and approaches. Predictive model calculations were based on laboratory-based information concerning porosities, diffusion coefficients, and sorption partition coefficients. After the experimental results were made available, the teams were able to revise their models to reproduce the observations. General conclusions from these back-analysis calculations include the need for reduced effective diffusion coefficients for 36Cl compared to those applicable to HTO (anion exclusion), the need to implement weaker sorption for 22Na compared to results from laboratory batch sorption experiments, and the observation of large differences between the theoretical initial concentrations for the strongly sorbing 133Ba and 134Cs, and the first measured values a few hours after tracer injection. Different teams applied different concepts, concerning mainly the implementation of isotropic versus anisotropic diffusion, or the possible existence of borehole disturbed zones around the different boreholes. The role of microstructure was also addressed in two of the models.
- Published
- 2023
7. Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Aspo Hard Rock Laboratory (Sweden)
- Author
-
Soler, Josep, Meng, Shuo, Moreno, Luis, Neretnieks, Ivars, Liu, Longcheng, Kekalainen, Pekka, Hokr, Milan, Vetesnik, Ales, Reimitz, Dan, Visnak, Jakub, Vopalka, Dusan, Krohn, Klaus-Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Deissmann, Guido, Bosbach, Dirk, Park, Dong Kyu, Ji, Sung-Hoon, Gvozdik, Libor, Milicky, Martin, Polak, Michal, Gylling, Björn, Lanyon, Bill, Soler, Josep, Meng, Shuo, Moreno, Luis, Neretnieks, Ivars, Liu, Longcheng, Kekalainen, Pekka, Hokr, Milan, Vetesnik, Ales, Reimitz, Dan, Visnak, Jakub, Vopalka, Dusan, Krohn, Klaus-Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Deissmann, Guido, Bosbach, Dirk, Park, Dong Kyu, Ji, Sung-Hoon, Gvozdik, Libor, Milicky, Martin, Polak, Michal, Gylling, Björn, and Lanyon, Bill
- Abstract
This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS). Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Aspo Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non-or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits. Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and, QC 20230529
- Published
- 2022
- Full Text
- View/download PDF
8. Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Äspö Hard Rock Laboratory (Sweden)
- Author
-
Voutilainen, Mikko, Trinchero, Paolo, Deissmann, Guido, Bosbach, Dirk, Kyu Park, Dong, Ji, Sung-Hoon, Gvoždík, Libor, Milický, Martin, Polák, Michal, Lanyon, Bill, Gylling, Björn, Soler, Josep, Meng, Shuo, Moreno, Luis, Neretnieks, Ivars, Longcheng, Liu, Kekäläinen, Pekka, Hokr, Milan, Říha, Jakub, Vetešník, Aleš, Reimitz, Dan, Višňák, Jakub, Vopálka, Dušan, Kröhn, Klaus-Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Voutilainen, Mikko, Trinchero, Paolo, Deissmann, Guido, Bosbach, Dirk, Kyu Park, Dong, Ji, Sung-Hoon, Gvoždík, Libor, Milický, Martin, Polák, Michal, Lanyon, Bill, Gylling, Björn, Soler, Josep, Meng, Shuo, Moreno, Luis, Neretnieks, Ivars, Longcheng, Liu, Kekäläinen, Pekka, Hokr, Milan, Říha, Jakub, Vetešník, Aleš, Reimitz, Dan, Višňák, Jakub, Vopálka, Dušan, Kröhn, Klaus-Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, and Iraola, Aitor
- Abstract
This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS).Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Äspö Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non- or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits.Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np-2
- Published
- 2022
9. Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Äspö Hard Rock Laboratory (Sweden)
- Author
-
Ministerio de Ciencia e Innovación (España), Soler, Josep M., Meng, Shuo, Moreno Zamora, Luis Ricardo, Neretnieks, Ivars, Liu, Longcheng, Kekäläinen, Pekka, Hokr, Milan, Říha, Jakub, Vetešník, Aleš, Reimitz, Dan, Višňák, Jakub, Vopálka, Dušan, Kröhn, Klaus Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Deissmann, Guido, Bosbach, Dirk, Park, Dong Kyu, Ji, Sung Hoon, Gvoždík, Libor, Milický, Martin, Polák, Michal, Gylling, Björn, William Lanyon, G., Ministerio de Ciencia e Innovación (España), Soler, Josep M., Meng, Shuo, Moreno Zamora, Luis Ricardo, Neretnieks, Ivars, Liu, Longcheng, Kekäläinen, Pekka, Hokr, Milan, Říha, Jakub, Vetešník, Aleš, Reimitz, Dan, Višňák, Jakub, Vopálka, Dušan, Kröhn, Klaus Peter, Tachi, Yukio, Ito, Tsuyoshi, Svensson, Urban, Iraola, Aitor, Trinchero, Paolo, Voutilainen, Mikko, Deissmann, Guido, Bosbach, Dirk, Park, Dong Kyu, Ji, Sung Hoon, Gvoždík, Libor, Milický, Martin, Polák, Michal, Gylling, Björn, and William Lanyon, G.
- Abstract
This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS). Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Äspö Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non-or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits. Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np
- Published
- 2022
10. C1_simulation
- Author
-
Trinchero, Paolo and Iraola, Aitor
- Subjects
Data_FILES - Abstract
These are the input files of the OpenFOAM simulations of case C1
- Published
- 2021
- Full Text
- View/download PDF
11. C2 simulation
- Author
-
Trinchero, Paolo, Iraola, Aitor, Bruines, Patrick, and Gylling, Björn
- Subjects
Data_FILES - Abstract
Input files of the OpenFOAM simulations of case C2
- Published
- 2021
- Full Text
- View/download PDF
12. Sistema de propulsión de un prototipo Hyperloop: diseño, simulación y fabricación del sistema de tracción
- Author
-
Estarlich Iraola, Aitor
- Subjects
Diseño mecánico ,Sistema de tracción ,Mechanical design ,INGENIERIA MECANICA ,Máster Universitario en Ingeniería Mecatrónica-Màster Universitari en Enginyeria Mecatrònica ,Traction system - Abstract
[ES] Hyperloop es un nuevo concepto de transporte presentado por la empresa privada Aeroespacial SpaceX. En Julio de 2012, su fundador Elon Musk, propuso un tipo de vehículo similar a un tren, que viajaba a través de un tubo en el que se había creado vacío (para evitar el rozamiento aerodinámico) y que además tenía un sistema de levitación (para evitar el rozamiento por contacto con un apoyo). De esta manera, se pretendía que el vehículo superase los 1000 Km/h evitando las más significativas pérdidas de energía que aparecen en todo tipo de vehículos a altas velocidades, y rompiese los límites de velocidad que tienen los vehículos terrestres actualmente. SpaceX, desde ese momento, construyó un tubo de vacío con un raíl, ambos a escala, y creó una competición para que universidades de todo el mundo colaborasen mediante el diseño y construcción de un prototipo de Pod. Como parte del trabajo realizado por el equipo Hyperloop UPV, en este proyecto se presenta el sistema de tracción, parte del sistema de propulsión del prototipo de Hyperloop creado para la competición de SpaceX. El proyecto consta de una serie de requerimientos basados principalmente en las características de los motores eléctricos seleccionados, de los materiales de las ruedas tractoras y de su apoyo, de las dimensiones límite para ello y del peso. Con esos requerimientos se calculan las fuerzas de tracción necesarias. No obstante, hay que tener en cuenta determinadas imperfecciones o variaciones que puede tener el raíl de apoyo, tema que influye en el diseño, y también los factores de seguridad que dictan las normas de la competición. Así, se crea el diseño del sistema de tracción, dividido principalmente en el diseño de las piezas de soporte centrales y los tensores. Tras simular su resistencia y funcionamiento, se fabricará todo el sistema y finalmente se realizarán varias pruebas reales para su montaje final en el prototipo., [EN] Hyperloop is a new transport concept presented by the private aerospace company SpaceX. In July 2012, its founder Elon Musk, proposed a type of vehicle similar to a train, which traveled through a tube in which vacuum was created (to avoid aerodynamic friction) and also had a levitation system ( to avoid friction by contact with a support). In this way, it was intended that the vehicle exceeded 1000 km / h avoiding the most significant energy losses that appear in all types of vehicles at high speeds, and break the speed limits that land vehicles currently have. SpaceX, from that moment, built a vacuum tube with a rail, both to scale, and created a competition for universities around the world to collaborate through the design and construction of a pod prototype. As part of the work carried out by the Hyperloop UPV team, this project presents the traction system, part of the propulsion system of the Hyperloop prototype created for the SpaceX competition. The project consists of a series of requirements based mainly on the characteristics of the selected electric motors, the materials of the traction wheels and their support, the limit dimensions for this and the weight. With these requirements, the necessary traction forces are calculated. However, it is necessary to take into account certain imperfections or variations that the support rail may have, an issue that influences the design, and also the safety factors that are defined by rules of the competition. Thus, the design of the traction system is created, divided mainly in the design of the central support pieces and the tensors. After simulating its resistance and operation, the entire system will be manufactured and finally several real tests will be carried out for its final assembly in the prototype.
- Published
- 2018
13. Groundwater age dating in fractured rock using 4He data
- Author
-
Trinchero, Paolo, primary, Sidborn, Magnus, additional, Puigdomenech, Ignasi, additional, Iraola, Aitor, additional, Bosbach, Dirk, additional, and Deissmann, Guido, additional
- Published
- 2019
- Full Text
- View/download PDF
14. Sistema de propulsión de un prototipo Hyperloop: diseño, simulación y fabricación del sistema de tracción
- Author
-
Carballeira Morado, Javier, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, Estarlich Iraola, Aitor, Carballeira Morado, Javier, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, and Estarlich Iraola, Aitor
- Abstract
[ES] Hyperloop es un nuevo concepto de transporte presentado por la empresa privada Aeroespacial SpaceX. En Julio de 2012, su fundador Elon Musk, propuso un tipo de vehículo similar a un tren, que viajaba a través de un tubo en el que se había creado vacío (para evitar el rozamiento aerodinámico) y que además tenía un sistema de levitación (para evitar el rozamiento por contacto con un apoyo). De esta manera, se pretendía que el vehículo superase los 1000 Km/h evitando las más significativas pérdidas de energía que aparecen en todo tipo de vehículos a altas velocidades, y rompiese los límites de velocidad que tienen los vehículos terrestres actualmente. SpaceX, desde ese momento, construyó un tubo de vacío con un raíl, ambos a escala, y creó una competición para que universidades de todo el mundo colaborasen mediante el diseño y construcción de un prototipo de Pod. Como parte del trabajo realizado por el equipo Hyperloop UPV, en este proyecto se presenta el sistema de tracción, parte del sistema de propulsión del prototipo de Hyperloop creado para la competición de SpaceX. El proyecto consta de una serie de requerimientos basados principalmente en las características de los motores eléctricos seleccionados, de los materiales de las ruedas tractoras y de su apoyo, de las dimensiones límite para ello y del peso. Con esos requerimientos se calculan las fuerzas de tracción necesarias. No obstante, hay que tener en cuenta determinadas imperfecciones o variaciones que puede tener el raíl de apoyo, tema que influye en el diseño, y también los factores de seguridad que dictan las normas de la competición. Así, se crea el diseño del sistema de tracción, dividido principalmente en el diseño de las piezas de soporte centrales y los tensores. Tras simular su resistencia y funcionamiento, se fabricará todo el sistema y finalmente se realizarán varias pruebas reales para su montaje final en el prototipo., [EN] Hyperloop is a new transport concept presented by the private aerospace company SpaceX. In July 2012, its founder Elon Musk, proposed a type of vehicle similar to a train, which traveled through a tube in which vacuum was created (to avoid aerodynamic friction) and also had a levitation system ( to avoid friction by contact with a support). In this way, it was intended that the vehicle exceeded 1000 km / h avoiding the most significant energy losses that appear in all types of vehicles at high speeds, and break the speed limits that land vehicles currently have. SpaceX, from that moment, built a vacuum tube with a rail, both to scale, and created a competition for universities around the world to collaborate through the design and construction of a pod prototype. As part of the work carried out by the Hyperloop UPV team, this project presents the traction system, part of the propulsion system of the Hyperloop prototype created for the SpaceX competition. The project consists of a series of requirements based mainly on the characteristics of the selected electric motors, the materials of the traction wheels and their support, the limit dimensions for this and the weight. With these requirements, the necessary traction forces are calculated. However, it is necessary to take into account certain imperfections or variations that the support rail may have, an issue that influences the design, and also the safety factors that are defined by rules of the competition. Thus, the design of the traction system is created, divided mainly in the design of the central support pieces and the tensors. After simulating its resistance and operation, the entire system will be manufactured and finally several real tests will be carried out for its final assembly in the prototype.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.