1. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure
- Author
-
Richard Malgat, François Faure, Arezki Boudaoud, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Reproduction et développement des plantes (RDP), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), INRIA Morphogenetics project, SOFA, ANR-12-BSV2-0023,MechInMorph,Identification du rôle mécanique des tissus internes dans la morphogenèse(2012), European Project: 307387,EC:FP7:ERC,ERC-2012-StG_20111012,PHYMORPH(2012), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut National Polytechnique de Grenoble (INPG), Boudaoud, Arezki, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon)
- Subjects
0106 biological sciences ,0301 basic medicine ,Materials science ,[SDV]Life Sciences [q-bio] ,Turgor pressure ,Modulus ,Plant Science ,lcsh:Plant culture ,01 natural sciences ,turgor ,Viscoelasticity ,03 medical and health sciences ,Indentation ,Botany ,atomic force microscope ,lcsh:SB1-1110 ,[INFO]Computer Science [cs] ,physically-based simulation ,mechanicalmodel ,cellwall ,physically-basedsimulation ,indentation ,shoot apical meristem ,floral meristem ,Elastic modulus ,Original Research ,Mechanics ,Elasticity (physics) ,mechanical model ,Hysteresis ,030104 developmental biology ,cell wall ,Displacement (fluid) ,010606 plant biology & botany - Abstract
International audience; Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work.
- Published
- 2016
- Full Text
- View/download PDF