21 results on '"Hueter RE"'
Search Results
2. Reply to: Shark mortality cannot be assessed by fishery overlap alone
- Author
-
Queiroz, N, Humphries, NE, Couto, A, Vedor, M, da Costa, I, Sequeira, AMM, Mucientes, G, Santos, AM, Abascal, FJ, Abercrombie, DL, Abrantes, K, Acuña-Marrero, D, Afonso, AS, Afonso, P, Anders, D, Araujo, G, Arauz, R, Bach, P, Barnett, A, Bernal, D, Berumen, ML, Lion, SB, Bezerra, NPA, Blaison, AV, Block, BA, Bond, ME, Bonfil, R, Bradford, RW, Braun, CD, Brooks, EJ, Brooks, A, Brown, J, Bruce, BD, Byrne, ME, Campana, SE, Carlisle, AB, Chapman, DD, Chapple, TK, Chisholm, J, Clarke, CR, Clua, EG, Cochran, JEM, Crochelet, EC, Dagorn, L, Daly, R, Cortés, DD, Doyle, TK, Drew, M, Duffy, CAJ, Erikson, T, Espinoza, E, Ferreira, LC, Ferretti, F, Filmalter, JD, Fischer, GC, Fitzpatrick, R, Fontes, J, Forget, F, Fowler, M, Francis, MP, Gallagher, AJ, Gennari, E, Goldsworthy, SD, Gollock, MJ, Green, JR, Gustafson, JA, Guttridge, TL, Guzman, HM, Hammerschlag, N, Harman, L, Hazin, FHV, Heard, M, Hearn, AR, Holdsworth, JC, Holmes, BJ, Howey, LA, Hoyos, M, Hueter, RE, Hussey, NE, Huveneers, C, Irion, DT, Jacoby, DMP, Jewell, OJD, Johnson, R, Jordan, LKB, Joyce, W, Keating Daly, CA, Ketchum, JT, Klimley, AP, Kock, AA, Koen, P, Ladino, F, Lana, FO, Lea, JSE, Llewellyn, F, Lyon, WS, MacDonnell, A, Macena, BCL, Marshall, H, McAllister, JD, Queiroz, N, Humphries, NE, Couto, A, Vedor, M, da Costa, I, Sequeira, AMM, Mucientes, G, Santos, AM, Abascal, FJ, Abercrombie, DL, Abrantes, K, Acuña-Marrero, D, Afonso, AS, Afonso, P, Anders, D, Araujo, G, Arauz, R, Bach, P, Barnett, A, Bernal, D, Berumen, ML, Lion, SB, Bezerra, NPA, Blaison, AV, Block, BA, Bond, ME, Bonfil, R, Bradford, RW, Braun, CD, Brooks, EJ, Brooks, A, Brown, J, Bruce, BD, Byrne, ME, Campana, SE, Carlisle, AB, Chapman, DD, Chapple, TK, Chisholm, J, Clarke, CR, Clua, EG, Cochran, JEM, Crochelet, EC, Dagorn, L, Daly, R, Cortés, DD, Doyle, TK, Drew, M, Duffy, CAJ, Erikson, T, Espinoza, E, Ferreira, LC, Ferretti, F, Filmalter, JD, Fischer, GC, Fitzpatrick, R, Fontes, J, Forget, F, Fowler, M, Francis, MP, Gallagher, AJ, Gennari, E, Goldsworthy, SD, Gollock, MJ, Green, JR, Gustafson, JA, Guttridge, TL, Guzman, HM, Hammerschlag, N, Harman, L, Hazin, FHV, Heard, M, Hearn, AR, Holdsworth, JC, Holmes, BJ, Howey, LA, Hoyos, M, Hueter, RE, Hussey, NE, Huveneers, C, Irion, DT, Jacoby, DMP, Jewell, OJD, Johnson, R, Jordan, LKB, Joyce, W, Keating Daly, CA, Ketchum, JT, Klimley, AP, Kock, AA, Koen, P, Ladino, F, Lana, FO, Lea, JSE, Llewellyn, F, Lyon, WS, MacDonnell, A, Macena, BCL, Marshall, H, and McAllister, JD
- Published
- 2021
3. Length at maturity of two pelagic sharks (Isurus paucus and Carcharhinus longimanus) found off northern Cuba
- Author
-
Ruiz-Abierno, A, primary, Márquez-Farías, JF, additional, Trápaga-Roig, M, additional, and Hueter, RE, additional
- Published
- 2021
- Full Text
- View/download PDF
4. A review of batoid philopatry, with implications for future research and population management
- Author
-
Flowers, KI, primary, Ajemian, MJ, additional, Bassos-Hull, K, additional, Feldheim, KA, additional, Hueter, RE, additional, Papastamatiou, YP, additional, and Chapman, DD, additional
- Published
- 2016
- Full Text
- View/download PDF
5. Diving into the vertical dimension of elasmobranch movement ecology.
- Author
-
Andrzejaczek S, Lucas TCD, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, Mambrasar R, McAllister JD, McCully Phillips SR, McGregor F, McMillan MN, McNaughton LM, Mendonça SA, Meyer CG, Meyers M, Mohan JA, Montgomery JC, Mucientes G, Musyl MK, Nasby-Lucas N, Natanson LJ, O'Sullivan JB, Oliveira P, Papastamtiou YP, Patterson TA, Pierce SJ, Queiroz N, Radford CA, Richardson AJ, Richardson AJ, Righton D, Rohner CA, Royer MA, Saunders RA, Schaber M, Schallert RJ, Scholl MC, Seitz AC, Semmens JM, Setyawan E, Shea BD, Shidqi RA, Shillinger GL, Shipley ON, Shivji MS, Sianipar AB, Silva JF, Sims DW, Skomal GB, Sousa LL, Southall EJ, Spaet JLY, Stehfest KM, Stevens G, Stewart JD, Sulikowski JA, Syakurachman I, Thorrold SR, Thums M, Tickler D, Tolloti MT, Townsend KA, Travassos P, Tyminski JP, Vaudo JJ, Veras D, Wantiez L, Weber SB, Wells RJD, Weng KC, Wetherbee BM, Williamson JE, Witt MJ, Wright S, Zilliacus K, Block BA, and Curnick DJ
- Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
- Published
- 2022
- Full Text
- View/download PDF
6. Global collision-risk hotspots of marine traffic and the world's largest fish, the whale shark.
- Author
-
Womersley FC, Humphries NE, Queiroz N, Vedor M, da Costa I, Furtado M, Tyminski JP, Abrantes K, Araujo G, Bach SS, Barnett A, Berumen ML, Bessudo Lion S, Braun CD, Clingham E, Cochran JEM, de la Parra R, Diamant S, Dove ADM, Dudgeon CL, Erdmann MV, Espinoza E, Fitzpatrick R, Cano JG, Green JR, Guzman HM, Hardenstine R, Hasan A, Hazin FHV, Hearn AR, Hueter RE, Jaidah MY, Labaja J, Ladino F, Macena BCL, Morris JJ Jr, Norman BM, Peñaherrera-Palma C, Pierce SJ, Quintero LM, Ramírez-Macías D, Reynolds SD, Richardson AJ, Robinson DP, Rohner CA, Rowat DRL, Sheaves M, Shivji MS, Sianipar AB, Skomal GB, Soler G, Syakurachman I, Thorrold SR, Webb DH, Wetherbee BM, White TD, Clavelle T, Kroodsma DA, Thums M, Ferreira LC, Meekan MG, Arrowsmith LM, Lester EK, Meyers MM, Peel LR, Sequeira AMM, Eguíluz VM, Duarte CM, and Sims DW
- Subjects
- Animals, Endangered Species, Plankton, Ships, Sharks
- Abstract
Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.
- Published
- 2022
- Full Text
- View/download PDF
7. Microbiome structure in large pelagic sharks with distinct feeding ecologies.
- Author
-
Pratte ZA, Perry C, Dove ADM, Hoopes LA, Ritchie KB, Hueter RE, Fischer C, Newton AL, and Stewart FJ
- Abstract
Background: Sharks play essential roles in ocean food webs and human culture, but also face population declines worldwide due to human activity. The relationship between sharks and the microbes on and in the shark body is unclear, despite research on other animals showing the microbiome as intertwined with host physiology, immunity, and ecology. Research on shark-microbe interactions faces the significant challenge of sampling the largest and most elusive shark species. We leveraged a unique sampling infrastructure to compare the microbiomes of two apex predators, the white (Carcharodon carcharias) and tiger shark (Galeocerdo cuvier), to those of the filter-feeding whale shark (Rhincodon typus), allowing us to explore the effects of feeding mode on intestinal microbiome diversity and metabolic function, and environmental exposure on the diversity of microbes external to the body (on the skin, gill)., Results: The fecal microbiomes of white and whale sharks were highly similar in taxonomic and gene category composition despite differences in host feeding mode and diet. Fecal microbiomes from these species were also taxon-poor compared to those of many other vertebrates and were more similar to those of predatory teleost fishes and toothed whales than to those of filter-feeding baleen whales. In contrast, microbiomes of external body niches were taxon-rich and significantly influenced by diversity in the water column microbiome., Conclusions: These results suggest complex roles for host identity, diet, and environmental exposure in structuring the shark microbiome and identify a small, but conserved, number of intestinal microbial taxa as potential contributors to shark physiology., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
8. Connecting post-release mortality to the physiological stress response of large coastal sharks in a commercial longline fishery.
- Author
-
Whitney NM, Lear KO, Morris JJ, Hueter RE, Carlson JK, and Marshall HM
- Subjects
- Animals, Fisheries, Risk Assessment, Sharks blood, Sharks growth & development, Acidosis physiopathology, Mortality trends, Potassium blood, Sharks physiology, Stress, Physiological
- Abstract
Bycatch mortality is a major factor contributing to shark population declines. Post-release mortality (PRM) is particularly difficult to quantify, limiting the accuracy of stock assessments. We paired blood-stress physiology with animal-borne accelerometers to quantify PRM rates of sharks caught in a commercial bottom longline fishery. Blood was sampled from the same individuals that were tagged, providing direct correlation between stress physiology and animal fate for sandbar (Carcharhinus plumbeus, N = 130), blacktip (C. limbatus, N = 105), tiger (Galeocerdo cuvier, N = 52), spinner (C. brevipinna, N = 14), and bull sharks (C. leucas, N = 14). PRM rates ranged from 2% and 3% PRM in tiger and sandbar sharks to 42% and 71% PRM in blacktip and spinner sharks, respectively. Decision trees based on blood values predicted mortality with >67% accuracy in blacktip and spinner sharks, and >99% accuracy in sandbar sharks. Ninety percent of PRM occurred within 5 h after release and 59% within 2 h. Blood physiology indicated that PRM was primarily associated with acidosis and increases in plasma potassium levels. Total fishing mortality reached 62% for blacktip and 89% for spinner sharks, which may be under-estimates given that some soak times were shortened to focus on PRM. Our findings suggest that no-take regulations may be beneficial for sandbar, tiger, and bull sharks, but less effective for more susceptible species such as blacktip and spinner sharks., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
9. Elasmobranch microbiomes: emerging patterns and implications for host health and ecology.
- Author
-
Perry CT, Pratte ZA, Clavere-Graciette A, Ritchie KB, Hueter RE, Newton AL, Fischer GC, Dinsdale EA, Doane MP, Wilkinson KA, Bassos-Hull K, Lyons K, Dove ADM, Hoopes LA, and Stewart FJ
- Abstract
Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch-microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
10. Reply to: Caution over the use of ecological big data for conservation.
- Author
-
Queiroz N, Humphries NE, Couto A, Vedor M, da Costa I, Sequeira AMM, Mucientes G, Santos AM, Abascal FJ, Abercrombie DL, Abrantes K, Acuña-Marrero D, Afonso AS, Afonso P, Anders D, Araujo G, Arauz R, Bach P, Barnett A, Bernal D, Berumen ML, Lion SB, Bezerra NPA, Blaison AV, Block BA, Bond ME, Bonfil R, Braun CD, Brooks EJ, Brooks A, Brown J, Byrne ME, Campana SE, Carlisle AB, Chapman DD, Chapple TK, Chisholm J, Clarke CR, Clua EG, Cochran JEM, Crochelet EC, Dagorn L, Daly R, Cortés DD, Doyle TK, Drew M, Duffy CAJ, Erikson T, Espinoza E, Ferreira LC, Ferretti F, Filmalter JD, Fischer GC, Fitzpatrick R, Fontes J, Forget F, Fowler M, Francis MP, Gallagher AJ, Gennari E, Goldsworthy SD, Gollock MJ, Green JR, Gustafson JA, Guttridge TL, Guzman HM, Hammerschlag N, Harman L, Hazin FHV, Heard M, Hearn AR, Holdsworth JC, Holmes BJ, Howey LA, Hoyos M, Hueter RE, Hussey NE, Huveneers C, Irion DT, Jacoby DMP, Jewell OJD, Johnson R, Jordan LKB, Joyce W, Keating Daly CA, Ketchum JT, Klimley AP, Kock AA, Koen P, Ladino F, Lana FO, Lea JSE, Llewellyn F, Lyon WS, MacDonnell A, Macena BCL, Marshall H, McAllister JD, Meÿer MA, Morris JJ, Nelson ER, Papastamatiou YP, Peñaherrera-Palma C, Pierce SJ, Poisson F, Quintero LM, Richardson AJ, Rogers PJ, Rohner CA, Rowat DRL, Samoilys M, Semmens JM, Sheaves M, Shillinger G, Shivji M, Singh S, Skomal GB, Smale MJ, Snyders LB, Soler G, Soria M, Stehfest KM, Thorrold SR, Tolotti MT, Towner A, Travassos P, Tyminski JP, Vandeperre F, Vaudo JJ, Watanabe YY, Weber SB, Wetherbee BM, White TD, Williams S, Zárate PM, Harcourt R, Hays GC, Meekan MG, Thums M, Irigoien X, Eguiluz VM, Duarte CM, Sousa LL, Simpson SJ, Southall EJ, and Sims DW
- Subjects
- Conservation of Natural Resources, Big Data, Ecology
- Published
- 2021
- Full Text
- View/download PDF
11. Reply to: Shark mortality cannot be assessed by fishery overlap alone.
- Author
-
Queiroz N, Humphries NE, Couto A, Vedor M, da Costa I, Sequeira AMM, Mucientes G, Santos AM, Abascal FJ, Abercrombie DL, Abrantes K, Acuña-Marrero D, Afonso AS, Afonso P, Anders D, Araujo G, Arauz R, Bach P, Barnett A, Bernal D, Berumen ML, Lion SB, Bezerra NPA, Blaison AV, Block BA, Bond ME, Bonfil R, Bradford RW, Braun CD, Brooks EJ, Brooks A, Brown J, Bruce BD, Byrne ME, Campana SE, Carlisle AB, Chapman DD, Chapple TK, Chisholm J, Clarke CR, Clua EG, Cochran JEM, Crochelet EC, Dagorn L, Daly R, Cortés DD, Doyle TK, Drew M, Duffy CAJ, Erikson T, Espinoza E, Ferreira LC, Ferretti F, Filmalter JD, Fischer GC, Fitzpatrick R, Fontes J, Forget F, Fowler M, Francis MP, Gallagher AJ, Gennari E, Goldsworthy SD, Gollock MJ, Green JR, Gustafson JA, Guttridge TL, Guzman HM, Hammerschlag N, Harman L, Hazin FHV, Heard M, Hearn AR, Holdsworth JC, Holmes BJ, Howey LA, Hoyos M, Hueter RE, Hussey NE, Huveneers C, Irion DT, Jacoby DMP, Jewell OJD, Johnson R, Jordan LKB, Joyce W, Keating Daly CA, Ketchum JT, Klimley AP, Kock AA, Koen P, Ladino F, Lana FO, Lea JSE, Llewellyn F, Lyon WS, MacDonnell A, Macena BCL, Marshall H, McAllister JD, Meÿer MA, Morris JJ, Nelson ER, Papastamatiou YP, Peñaherrera-Palma C, Pierce SJ, Poisson F, Quintero LM, Richardson AJ, Rogers PJ, Rohner CA, Rowat DRL, Samoilys M, Semmens JM, Sheaves M, Shillinger G, Shivji M, Singh S, Skomal GB, Smale MJ, Snyders LB, Soler G, Soria M, Stehfest KM, Thorrold SR, Tolotti MT, Towner A, Travassos P, Tyminski JP, Vandeperre F, Vaudo JJ, Watanabe YY, Weber SB, Wetherbee BM, White TD, Williams S, Zárate PM, Harcourt R, Hays GC, Meekan MG, Thums M, Irigoien X, Eguiluz VM, Duarte CM, Sousa LL, Simpson SJ, Southall EJ, and Sims DW
- Subjects
- Animals, Conservation of Natural Resources, Seafood, Fisheries, Sharks
- Published
- 2021
- Full Text
- View/download PDF
12. Global spatial risk assessment of sharks under the footprint of fisheries.
- Author
-
Queiroz N, Humphries NE, Couto A, Vedor M, da Costa I, Sequeira AMM, Mucientes G, Santos AM, Abascal FJ, Abercrombie DL, Abrantes K, Acuña-Marrero D, Afonso AS, Afonso P, Anders D, Araujo G, Arauz R, Bach P, Barnett A, Bernal D, Berumen ML, Bessudo Lion S, Bezerra NPA, Blaison AV, Block BA, Bond ME, Bonfil R, Bradford RW, Braun CD, Brooks EJ, Brooks A, Brown J, Bruce BD, Byrne ME, Campana SE, Carlisle AB, Chapman DD, Chapple TK, Chisholm J, Clarke CR, Clua EG, Cochran JEM, Crochelet EC, Dagorn L, Daly R, Cortés DD, Doyle TK, Drew M, Duffy CAJ, Erikson T, Espinoza E, Ferreira LC, Ferretti F, Filmalter JD, Fischer GC, Fitzpatrick R, Fontes J, Forget F, Fowler M, Francis MP, Gallagher AJ, Gennari E, Goldsworthy SD, Gollock MJ, Green JR, Gustafson JA, Guttridge TL, Guzman HM, Hammerschlag N, Harman L, Hazin FHV, Heard M, Hearn AR, Holdsworth JC, Holmes BJ, Howey LA, Hoyos M, Hueter RE, Hussey NE, Huveneers C, Irion DT, Jacoby DMP, Jewell OJD, Johnson R, Jordan LKB, Jorgensen SJ, Joyce W, Keating Daly CA, Ketchum JT, Klimley AP, Kock AA, Koen P, Ladino F, Lana FO, Lea JSE, Llewellyn F, Lyon WS, MacDonnell A, Macena BCL, Marshall H, McAllister JD, McAuley R, Meÿer MA, Morris JJ, Nelson ER, Papastamatiou YP, Patterson TA, Peñaherrera-Palma C, Pepperell JG, Pierce SJ, Poisson F, Quintero LM, Richardson AJ, Rogers PJ, Rohner CA, Rowat DRL, Samoilys M, Semmens JM, Sheaves M, Shillinger G, Shivji M, Singh S, Skomal GB, Smale MJ, Snyders LB, Soler G, Soria M, Stehfest KM, Stevens JD, Thorrold SR, Tolotti MT, Towner A, Travassos P, Tyminski JP, Vandeperre F, Vaudo JJ, Watanabe YY, Weber SB, Wetherbee BM, White TD, Williams S, Zárate PM, Harcourt R, Hays GC, Meekan MG, Thums M, Irigoien X, Eguiluz VM, Duarte CM, Sousa LL, Simpson SJ, Southall EJ, and Sims DW
- Subjects
- Animals, Population Density, Risk Assessment, Sharks classification, Ships, Time Factors, Animal Migration, Fisheries statistics & numerical data, Geographic Mapping, Oceans and Seas, Sharks physiology, Spatio-Temporal Analysis
- Abstract
Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.
- Published
- 2019
- Full Text
- View/download PDF
13. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes.
- Author
-
Lear KO, Whitney NM, Brewster LR, Morris JJ, Hueter RE, and Gleiss AC
- Subjects
- Accelerometry, Animals, Computer Simulation, Models, Biological, Oxygen Consumption, Respiration, Temperature, Acceleration, Basal Metabolism, Sharks physiology, Swimming
- Abstract
The ability to produce estimates of the metabolic rate of free-ranging animals is fundamental to the study of their ecology. However, measuring the energy expenditure of animals in the field has proved difficult, especially for aquatic taxa. Accelerometry presents a means of translating metabolic rates measured in the laboratory to individuals studied in the field, pending appropriate laboratory calibrations. Such calibrations have only been performed on a few fish species to date, and only one where the effects of temperature were accounted for. Here, we present calibrations between activity, measured as overall dynamic body acceleration (ODBA), and metabolic rate, measured through respirometry, for nurse sharks (Ginglymostoma cirratum), lemon sharks (Negaprion brevirostris) and blacktip sharks (Carcharhinus limbatus). Calibrations were made at a range of volitional swimming speeds and experimental temperatures. Linear mixed models were used to determine a predictive equation for metabolic rate based on measured ODBA values, with the optimal model using ODBA in combination with activity state and temperature to predict metabolic rate in lemon and nurse sharks, and ODBA and temperature to predict metabolic rate in blacktip sharks. This study lays the groundwork for calculating the metabolic rate of these species in the wild using acceleration data., (© 2017. Published by The Company of Biologists Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
14. Vertical Movements and Patterns in Diving Behavior of Whale Sharks as Revealed by Pop-Up Satellite Tags in the Eastern Gulf of Mexico.
- Author
-
Tyminski JP, de la Parra-Venegas R, González Cano J, and Hueter RE
- Subjects
- Animals, Gulf of Mexico, Satellite Communications, Behavior, Animal physiology, Diving Reflex physiology, Whales physiology
- Abstract
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep ("extreme") dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.
- Published
- 2015
- Full Text
- View/download PDF
15. Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus.
- Author
-
Gardiner JM, Whitney NM, and Hueter RE
- Subjects
- Animals, Chemotaxis, Cues, Florida, Homing Behavior, Olfactory Perception, Sharks physiology
- Abstract
Animal navigation in the marine environment is believed to be guided by different sensory cues over different spatial scales. Geomagnetic cues are thought to guide long-range navigation, while visual or olfactory cues allow animals to pinpoint precise locations, but the complete behavioral sequence is not yet understood. Terra Ceia Bay is a primary nursery area for blacktip sharks, Carcharhinus limbatus, on southwestern Florida's Gulf of Mexico coast. Young-of-the-year animals show strong fidelity to a specific home range in the northeastern end of the bay and rapidly return when displaced. Older juveniles demonstrate annual philopatry for the first few years, migrating as far south as the Florida Keys each fall, then returning to Terra Ceia Bay each spring. To examine the sensory cues used in homing, we captured neonate (<3 weeks old) blacktip sharks from within their home range, fitted them with acoustic tags, and translocated them to sites 8 km away in adjacent Tampa Bay and released them. Intact animals returned to their home range, within 34 h on average, and remained there. With olfaction blocked, fewer animals returned to their home range and they took longer to do so, 130 h on average. However, they did not remain there but instead moved throughout Terra Ceia Bay and in and out of Tampa Bay. Since sharks from both treatments returned at night in tannic and turbid water, vision is likely not playing a major role in navigation by these animals. The animals in this study also returned on incoming or slack tides, suggesting that sharks, like many other fish, may use selective tidal stream transport to conserve energy and aid navigation during migration. Collectively, these results suggest that while other cues, possibly geomagnetic and/or tidal information, might guide sharks over long distances, olfactory cues are required for recognizing their specific home range., (© The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
16. Population Structure and Seasonal Migration of the Spotted Eagle Ray, Aetobatus narinari.
- Author
-
Sellas AB, Bassos-Hull K, Pérez-Jiménez JC, Angulo-Valdés JA, Bernal MA, and Hueter RE
- Subjects
- Animals, Caribbean Region, DNA, Mitochondrial genetics, Female, Gene Flow, Gulf of Mexico, Male, Microsatellite Repeats, Models, Genetic, Sequence Analysis, DNA, Animal Migration, Genetic Variation, Genetics, Population, Skates, Fish genetics
- Abstract
Few studies have reported on the fine-scale population genetics of batoid species in the Atlantic basin. Here, we investigate the genetic diversity and population structure of the spotted eagle ray, Aetobatus narinari, sampled in the northeastern and southwestern parts of the Gulf of Mexico and in the northwestern Caribbean Sea. Samples were collected from 286 individuals sampled across 3 geographic localities. Estimates of divergence based on the mitochondrial cytochrome b gene and 10 nuclear microsatellite loci reveal weak but significant genetic structure among A. narinari populations in this region. Analysis of molecular variance estimates based on both marker types indicate significant differentiation between Florida and Mexico populations, while comparisons with Cuba suggest high levels of gene flow with rays from both Mexico and Florida. Conflicting results were found from the different marker types when sexes were analyzed separately underscoring the importance of applying multiple marker types when making inferences about population structure and sex-biased dispersal. Results from Bayesian clustering analyses suggest rays may be migrating south out of the Gulf of Mexico and into the northwestern Caribbean Sea. Given the impacts of fisheries on this species, coupled with the lack of population genetic data available, these findings offer valuable information to aid with conservation management strategies., (© The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
17. Multisensory integration and behavioral plasticity in sharks from different ecological niches.
- Author
-
Gardiner JM, Atema J, Hueter RE, and Motta PJ
- Subjects
- Animals, Adaptation, Physiological, Ecosystem, Predatory Behavior physiology, Sensation physiology, Sharks physiology
- Abstract
The underwater sensory world and the sensory systems of aquatic animals have become better understood in recent decades, but typically have been studied one sense at a time. A comprehensive analysis of multisensory interactions during complex behavioral tasks has remained a subject of discussion without experimental evidence. We set out to generate a general model of multisensory information extraction by aquatic animals. For our model we chose to analyze the hierarchical, integrative, and sometimes alternate use of various sensory systems during the feeding sequence in three species of sharks that differ in sensory anatomy and behavioral ecology. By blocking senses in different combinations, we show that when some of their normal sensory cues were unavailable, sharks were often still capable of successfully detecting, tracking and capturing prey by switching to alternate sensory modalities. While there were significant species differences, odor was generally the first signal detected, leading to upstream swimming and wake tracking. Closer to the prey, as more sensory cues became available, the preferred sensory modalities varied among species, with vision, hydrodynamic imaging, electroreception, and touch being important for orienting to, striking at, and capturing the prey. Experimental deprivation of senses showed how sharks exploit the many signals that comprise their sensory world, each sense coming into play as they provide more accurate information during the behavioral sequence of hunting. The results may be applicable to aquatic hunting in general and, with appropriate modification, to other types of animal behavior.
- Published
- 2014
- Full Text
- View/download PDF
18. Horizontal movements, migration patterns, and population structure of whale sharks in the Gulf of Mexico and northwestern Caribbean sea.
- Author
-
Hueter RE, Tyminski JP, and de la Parra R
- Subjects
- Animals, Atlantic Ocean, Caribbean Region, Feeding Behavior physiology, Female, Florida, Geography, Gulf of Mexico, Male, Mexico, Oceans and Seas, Population Density, Population Dynamics, Sex Factors, Time Factors, Animal Migration physiology, Movement physiology, Seasons, Sharks physiology
- Abstract
Whale sharks, Rhincodon typus, aggregate by the hundreds in a summer feeding area off the northeastern Yucatan Peninsula, Mexico, where the Gulf of Mexico meets the Caribbean Sea. The aggregation remains in the nutrient-rich waters off Isla Holbox, Isla Contoy and Isla Mujeres, Quintana Roo for several months in the summer and then dissipates between August and October. Little has been known about where these sharks come from or migrate to after they disperse. From 2003-2012, we used conventional visual tags, photo-identification, and satellite tags to characterize the basic population structure and large-scale horizontal movements of whale sharks that come to this feeding area off Mexico. The aggregation comprised sharks ranging 2.5-10.0 m in total length and included juveniles, subadults, and adults of both sexes, with a male-biased sex ratio (72%). Individual sharks remained in the area for an estimated mean duration of 24-33 days with maximum residency up to about 6 months as determined by photo-identification. After leaving the feeding area the sharks showed horizontal movements in multiple directions throughout the Gulf of Mexico basin, the northwestern Caribbean Sea, and the Straits of Florida. Returns of individual sharks to the Quintana Roo feeding area in subsequent years were common, with some animals returning for six consecutive years. One female shark with an estimated total length of 7.5 m moved at least 7,213 km in 150 days, traveling through the northern Caribbean Sea and across the equator to the South Atlantic Ocean where her satellite tag popped up near the Mid-Atlantic Ridge. We hypothesize this journey to the open waters of the Mid-Atlantic was for reproductive purposes but alternative explanations are considered. The broad movements of whale sharks across multiple political boundaries corroborates genetics data supporting gene flow between geographically distinct areas and underscores the need for management and conservation strategies for this species on a global scale.
- Published
- 2013
- Full Text
- View/download PDF
19. Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments.
- Author
-
McComb DM, Frank TM, Hueter RE, and Kajiura SM
- Subjects
- Animals, Color Perception physiology, Color Vision physiology, Dark Adaptation physiology, Electroretinography veterinary, Environment, Light, Reaction Time physiology, Sensory Thresholds physiology, Species Specificity, Time Factors, Sharks physiology, Visual Perception physiology
- Abstract
Visual temporal resolution and scotopic spectral sensitivity of three coastal shark species (bonnethead Sphyrna tiburo, scalloped hammerhead Sphyrna lewini, and blacknose shark Carcharhinus acronotus) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum critical flicker-fusion frequency (CFF). Photopic CFF(max) was significantly higher than scotopic CFF(max) in all species. The bonnethead had the shortest photoreceptor response latency time (23.5 ms) and the highest CFF(max) (31 Hz), suggesting that its eyes are adapted for a bright photic environment. In contrast, the blacknose had the longest response latency time (34.8 ms) and lowest CFF(max) (16 Hz), indicating its eyes are adapted for a dimmer environment or nocturnal lifestyle. Scotopic spectral sensitivity revealed maximum peaks (480 nm) in the bonnethead and blacknose sharks that correlated with environmental spectra measured during twilight, which is a biologically relevant period of heightened predation.
- Published
- 2010
- Full Text
- View/download PDF
20. Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci.
- Author
-
Huber DR, Eason TG, Hueter RE, and Motta PJ
- Subjects
- Animals, Biomechanical Phenomena, Electric Stimulation, Bite Force, Feeding Behavior physiology, Jaw anatomy & histology, Jaw physiology, Mastication physiology, Sharks physiology
- Abstract
Three-dimensional static equilibrium analysis of the forces generated by the jaw musculature of the horn shark Heterodontus francisci was used to theoretically estimate the maximum force distributions and loadings on its jaws and suspensorium during biting. Theoretical maximum bite force was then compared with bite forces measured (1) voluntarily in situ, (2) in restrained animals and (3) during electrical stimulation of the jaw adductor musculature of anesthetized sharks. Maximum theoretical bite force ranged from 128 N at the anteriormost cuspidate teeth to 338 N at the posteriormost molariform teeth. The hyomandibula, which connects the posterior margin of the jaws to the base of the chondrocranium, is loaded in tension during biting. Conversely, the ethmoidal articulation between the palatal region of the upper jaw and the chondrocranium is loaded in compression, even during upper jaw protrusion, because H. francisci's upper jaw does not disarticulate from the chondrocranium during prey capture. Maximum in situ bite force averaged 95 N for free-swimming H. francisci, with a maximum of 133 N. Time to maximum force averaged 322 ms and was significantly longer than time away from maximum force (212 ms). Bite force measurements from restrained individuals (187 N) were significantly greater than those from free-swimming individuals (95 N) but were equivalent to those from both theoretical (128 N) and electrically stimulated measurements (132 N). The mean mass-specific bite of H. francisci was greater than that of many other vertebrates and second highest of the cartilaginous fishes that have been studied. Measuring bite force on restrained sharks appears to be the best indicator of maximum bite force. The large bite forces and robust molariform dentition of H. francisci correspond to its consumption of hard prey.
- Published
- 2005
- Full Text
- View/download PDF
21. Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris).
- Author
-
Hueter RE, Murphy CJ, Howland M, Sivak JG, Paul-Murphy JR, and Howland HC
- Subjects
- Animals, Female, Hyperopia etiology, Hyperopia physiopathology, Male, Microscopy, Video, Restraint, Physical adverse effects, Time Factors, Accommodation, Ocular physiology, Refraction, Ocular, Sharks physiology
- Abstract
Optical measurements of the refractive state of the eyes of various shark species typically have depicted sharks as hyperopic (far-sighted) with little evidence of accommodation (i.e. the ability to change focus for visualizing objects at different distances from the eye). In this study, we used infrared video retinoscopy to measure the refractive state in juvenile lemon sharks (Negaprion brevirostris). This technique allows dynamic measurement of refractive state in free-swimming animals as they pass by an aquarium window. We found that unrestrained lemon sharks are focused emmetropically relative to a 1-m distant photorefractor for the lateral visual field. However, when restrained either right side up or upside down (the latter inducing tonic immobility), the sharks become increasingly hyperopic, an artifact also reported in some other vertebrates. In addition, unrestrained lemon sharks display small amplitude accommodative excursions. Thus, refractive state measurements on restrained sharks in general may not reflect the natural, resting state of the shark eye, but rather, an induced hyperopia and lack of accommodative function. Such an artifact may be present in other vertebrate species, underscoring the need to obtain measurements of refractive state in unrestrained animals.
- Published
- 2001
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.