1. BMI Prediction from Handwritten English Characters Using a Convolutional Neural Network
- Author
-
Diba, N. T., Akter, N., Chowdhury, S. A. H., and Giti, J. E.
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
A person's Body Mass Index, or BMI, is the most widely used parameter for assessing their health. BMI is a crucial predictor of potential diseases that may arise at higher body fat levels because it is correlated with body fat. Conversely, a community's or an individual's nutritional status can be determined using the BMI. Although deep learning models are used in several studies to estimate BMI from face photos and other data, no previous research established a clear connection between deep learning techniques for handwriting analysis and BMI prediction. This article addresses this research gap with a deep learning approach to estimating BMI from handwritten characters by developing a convolutional neural network (CNN). A dataset containing samples from 48 people in lowercase English scripts is successfully captured for the BMI prediction task. The proposed CNN-based approach reports a commendable accuracy of 99.92%. Performance comparison with other popular CNN architectures reveals that AlexNet and InceptionV3 achieve the second and third-best performance, with the accuracy of 99.69% and 99.53%, respectively.
- Published
- 2024