Fakhri Torkhani, Thomas Dietenbeck, Marco Attene, Jean-Marie Favreau, Ahlem Othmani, 2 - Images et Modèles, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), Image Science for Interventional Techniques ( ISIT ), Université d'Auvergne - Clermont-Ferrand I ( UdA ) -Clermont Université-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), IMATI, Istituto di Matematica Applicata e Tecnologie Informatiche ( IMATI-CNR ), Consiglio Nazionale delle Ricerche [Roma] ( CNR ) -Consiglio Nazionale delle Ricerche [Roma] ( CNR ), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes ( LIMOS ), Sigma CLERMONT ( Sigma CLERMONT ) -Université Clermont Auvergne ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Imagerie Biomédicale (LIB), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Image Science for Interventional Techniques (ISIT), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Centre National de la Recherche Scientifique (CNRS), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI-CNR), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Favreau, Jean-Marie, Laboratoire d'Imagerie Biomédicale [Paris] (LIB), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)-National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), and Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Mesh segmentation and semantic annotation are used as preprocessing steps formany applications, including shape retrieval, mesh abstraction, and adaptive simplification. In current practice, these two steps are done sequentially: a purely geometrical analysis is employed to extract the relevant parts, and then these parts are annotated. We introduce an original framework where annotation and segmentation are performed simultaneously, so that each of the two steps can take advantage of the other. Inspired by existing methods used in image processing, we employ an expert's knowledge of the context to drive the process while minimizing the use of geometric analysis. For each specific context a multi-layer ontology can be designed on top of a basic knowledge layer which conceptualizes 3D object features from the point of view of their geometry, topology, and possible attributes. Each feature is associated with an elementary algorithm for its detection. An expert can define the upper layers of the ontology to conceptualize a specific domain without the need to reconsider the elementary algorithms. This approach has a twofold advantage: on one hand it allows Mesh segmentation and semantic annotation are used as preprocessing steps formany applications, including shape retrieval, mesh abstraction, and adaptive simplification. In current practice, these two steps are done sequentially: a purely geometrical analysis is employed to extract the relevant parts, and then these parts are annotated. We introduce an original framework where annotation and segmentation are performed simultaneously, so that each of the two steps can take advantage of the other. Inspired by existing methods used in image processing, we employ an expert's knowledge of the context to drive the process while minimizing the use of geometric analysis. For each specific context a multi-layer ontology can be designed on top of a basic knowledge layer which conceptualizes 3D object features from the point of view of their geometry, topology, and possible attributes. Each feature is associated with an elementary algorithm for its detection. An expert can define the upper layers of the ontology to conceptualize a specific domain without the need to reconsider the elementary algorithms. This approach has a twofold advantage: on one hand it allows Mesh segmentation and semantic annotation are used as preprocessing steps formany applications, including shape retrieval, mesh abstraction, and adaptive simplification. In current practice, these two steps are done sequentially: a purely geometrical analysis is employed to extract the relevant parts, and then these parts are annotated. We introduce an original framework where annotation and segmentation are performed simultaneously, so that each of the two steps can take advantage of the other. Inspired by existing methods used in image processing, we employ an expert's knowledge of the context to drive the process while minimizing the use of geometric analysis. For each specific context a multi-layer ontology can be designed on top of a basic knowledge layer which conceptualizes 3D object features from the point of view of their geometry, topology, and possible attributes. Each feature is associated with an elementary algorithm for its detection. An expert can define the upper layers of the ontology to conceptualize a specific domain without the need to reconsider the elementary algorithms. This approach has a twofold advantage: on one hand it allows to leverage domain knowledge from experts even if they have limited or no skills in geometry processing and computer programming; on the other hand, it provides a solid ground to be easily extended in different contexts with a limited effort.