A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy., {"references":["H. Schmidt, F. Heuer, J. Drumm, Z. Klezl, L. Claes,\nand H.-J. Wilke, \"Application of a calibration method\nprovides more realistic results for a finite element model\nof a lumbar spinal segment.\" Clinical biomechanics\n(Bristol, Avon), vol. 22, no. 4, pp. 377–84, May\n2007. (Online). Available: http://www.ncbi.nlm.nih.gov/\npubmed/17204355","H. Schmidt, F. Heuer, L. Claes, and H.-J. Wilke,\n\"The relation between the instantaneous center of\nrotation and facet joint forces - A finite element\nanalysis.\" Clinical biomechanics (Bristol, Avon), vol. 23,\nno. 3, pp. 270–8, Mar. 2008. (Online). Available:\nhttp://www.ncbi.nlm.nih.gov/pubmed/17997207","H. Schmidt, F. Galbusera, A. Rohlmann, T. Zander,\nand H.-J. Wilke, \"Effect of multilevel lumbar disc\narthroplasty on spine kinematics and facet joint loads\nin flexion and extension: a finite element analysis,\"\nEuropean Spine Journal, vol. 21, no. 5, pp. 663–674,\n2012. (Online). Available: http://dx.doi.org/10.1007/\ns00586-010-1382-1","D. S. Shin, K. Lee, and D. Kim, \"Biomechanical study\nof lumbar spine with dynamic stabilization device using\nfinite element method,\" Comput. Aided Des., vol. 39,\nno. 7, pp. 559–567, Jul. 2007. (Online). Available:\nhttp://dx.doi.org/10.1016/j.cad.2007.03.005","Y. Alapan, C. Demir, T. Kaner, R. Guclu, and\nS. Inceo˘glu, \"Instantaneous center of rotation behavior\nof the lumbar spine with ligament failure.\" Journal of\nneurosurgery. Spine, vol. 18, no. 6, pp. 617–26, Jun.\n2013. (Online). Available: http://www.ncbi.nlm.nih.gov/\npubmed/23600587","T. Zander, A. Rohlmann, and G. Bergmann, \"Influence\nof ligament stiffness on the mechanical behavior of a\nfunctional spinal unit.\" Journal of biomechanics, vol. 37,\nno. 7, pp. 1107–11, Jul. 2004. (Online). Available:\nhttp://www.ncbi.nlm.nih.gov/pubmed/15165881","B. Weisse, a. K. Aiyangar, C. Affolter, R. Gander,\nG. P. Terrasi, and H. Ploeg, \"Determination of the\ntranslational and rotational stiffnesses of an L4-L5\nfunctional spinal unit using a specimen-specific finite\nelement model.\" Journal of the mechanical behavior\nof biomedical materials, vol. 13, pp. 45–61, Sep.\n2012. (Online). Available: http://www.ncbi.nlm.nih.gov/\npubmed/22842275","T. Yoshimura, K. Nakai, and G. Tamaoki, \"Multi-body\ndynamics modelling of seated human body under\nexposure to whole-body vibration.\" Industrial health,\nvol. 43, no. 3, pp. 441–7, Jul. 2005. (Online). Available:\nhttp://www.ncbi.nlm.nih.gov/pubmed/16100921","M. Christophy, N. Faruk Senan, J. Lotz, and O. O'Reilly,\n\"A musculoskeletal model for the lumbar spine,\"\nBiomechanics and Modeling in Mechanobiology, vol. 11,\nno. 1-2, pp. 19–34, 2012. (Online). Available: http:\n//dx.doi.org/10.1007/s10237-011-0290-6\n[10] K. T. Huynh, I. Gibson, B. N. Jagdish, and W. F. Lu,\n\"Development and validation of a discretised multi-body\nspine model in LifeMOD for biodynamic behaviour\nsimulation.\" Computer methods in biomechanics and\nbiomedical engineering, vol. 0, no. June 2013, pp.\n37–41, Apr. 2013. (Online). Available: http://www.ncbi.\nnlm.nih.gov/pubmed/23621475\n[11] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, \"Hybrid\nsimulation of deformable solids,\" in Proceedings of\nthe 2007 ACM SIGGRAPH/Eurographics symposium on\nComputer animation. Eurographics Association, 2007,\npp. 81–90.\n[12] S.-H. Lee, E. Sifakis, and D. Terzopoulos,\n\"Comprehensive biomechanical modeling and simulation\nof the upper body,\" ACM Trans. Graph., vol. 28,\nno. 4, pp. 99:1–99:17, Sep. 2009. (Online). Available:\nhttp://doi.acm.org/10.1145/1559755.1559756\n[13] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai, \"Sparse\nmeshless models of complex deformable solids,\" ACM\nTrans. Graph., vol. 30, no. 4, pp. 73:1–73:10, Jul. 2011.\n(Online). Available: http://doi.acm.org/10.1145/2010324.\n1964968\n[14] I. Stavness, J. E. Lloyd, Y. Payan, and S. Fels,\n\"Coupled hard–soft tissue simulation with contact and\nconstraints applied to jaw–tongue–hyoid dynamics,\"\nInternational Journal for Numerical Methods in\nBiomedical Engineering, vol. 27, no. 3, pp. 367–390,\n2011.\n[15] M. Dreischarf, T. Zander, A. Shirazi-Adl, C. Puttlitz,\nC. Adam, C. Chen, V. Goel, A. Kiapour, Y. Kim,\nK. Labus et al., \"Comparison of eight published static\nfinite element models of the intact lumbar spine:\nPredictive power of models improves when combined\ntogether,\" Journal of biomechanics, vol. 47, no. 8, pp.\n1757–1766, 2014.\n[16] N. Mitsuhashi, K. Fujieda, T. Tamura, S. Kawamoto,\nT. Takagi, and K. Okubo, \"Bodyparts3d: 3d structure\ndatabase for anatomical concepts,\" Nucleic Acids\nResearch, vol. 37, no. suppl 1, pp. D782–D785, 2009.\n[17] S. J. Ferguson, K. Ito, and L.-P. Nolte, \"Fluid flow and\nconvective transport of solutes within the intervertebral\ndisc,\" Journal of Biomechanics, vol. 37, no. 2, pp.\n213 – 221, 2004, spinal Biomechanics. (Online).\nAvailable: http://www.sciencedirect.com/science/article/\npii/S0021929003002501\n[18] A. Malandrino, J. A. Planell, and D. Lacroix, \"Statistical\nfactorial analysis on the poroelastic material properties\nsensitivity of the lumbar intervertebral disc under\ncompression, flexion and axial rotation,\" Journal of\nBiomechanics, vol. 42, no. 16, pp. 2780 – 2788,\n2009. (Online). Available: http://www.sciencedirect.com/\nscience/article/pii/S0021929009004679\n[19] A. Shirazi-Adl, A. M. AHMED, and S. C.\nSHRIVASTAVA, \"Mechanical response of a lumbar\nmotion segment in axial torque alone and combined\nwith compression,\" Spine, vol. 11, no. 9, pp. 914–927, 1986.\n[20] J. Chazal, a. Tanguy, M. Bourges, G. Gaurel,\nG. Escande, M. Guillot, and G. Vanneuville,\n\"Biomechanical properties of spinal ligaments and\na histological study of the supraspinal ligament\nin traction.\" Journal of biomechanics, vol. 18,\nno. 3, pp. 167–76, Jan. 1985. (Online). Available:\nhttp://www.ncbi.nlm.nih.gov/pubmed/3997901\n[21] Y. Masharawi, B. Rothschild, G. Dar, S. Peleg,\nD. Robinson, E. Been, and I. Hershkovitz,\n\"Facet Orientation in the Thoracolumbar Spine:\nThree-dimensional Anatomic and Biomechanical\nAnalysis,\" Spine, vol. 29, no. 16, 2004. (Online).\nAvailable: http://journals.lww.com/spinejournal/\nFulltext/2004/08150/Facet\\ Orientation\\ in\\ the\\\nThoracolumbar\\ Spine\\ .9.aspx\n[22] M. Nordin and V. H. V. H. Frankel, Basic biomechanics\nof the musculoskeletal system. Philadelphia (Pa.):\nLippincott Williams & Wilkins, 2001. (Online).\nAvailable: http://opac.inria.fr/record=b1133407\n[23] A. De Luca, \"Feedforward/feedback laws for the control\nof flexible robots,\" in Robotics and Automation, 2000.\nProceedings. ICRA '00. IEEE International Conference\non, vol. 1, 2000, pp. 233–240 vol.1.\n[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.\nFlannery, Numerical Recipes 3rd Edition: The Art of\nScientific Computing, 3rd ed. New York, NY, USA:\nCambridge University Press, 2007.\n[25] W. M. Park, K. Kim, and Y. H. Kim, \"Effects\nof degenerated intervertebral discs on intersegmental\nrotations, intradiscal pressures, and facet joint forces\nof the whole lumbar spine,\" Computers in biology and\nmedicine, vol. 43, no. 9, pp. 1234–1240, 2013.\n[26] U. M. Ayturk and C. M. Puttlitz, \"Parametric\nconvergence sensitivity and validation of a finite element\nmodel of the human lumbar spine,\" Computer methods in\nbiomechanics and biomedical engineering, vol. 14, no. 8,\npp. 695–705, 2011.\n[27] C.-L. Liu, Z.-C. Zhong, H.-W. Hsu, S.-L. Shih, S.-T.\nWang, C. Hung, and C.-S. Chen, \"Effect of the cord\npretension of the dynesys dynamic stabilisation system\non the biomechanics of the lumbar spine: a finite element\nanalysis,\" European Spine Journal, vol. 20, no. 11, pp.\n1850–1858, 2011.\n[28] J. P. Little, H. De Visser, M. J. Pearcy, and C. J. Adam,\n\"Are coupled rotations in the lumbar spine largely due\nto the osseo-ligamentous anatomy?—a modeling study,\"\nComputer methods in biomechanics and biomedical\nengineering, vol. 11, no. 1, pp. 95–103, 2008.\n[29] A. Shirazi-Adl, \"Biomechanics of the lumbar spine in\nsagittal/lateral moments,\" Spine, vol. 19, no. 21, pp.\n2407–2414, 1994.\n[30] T. Zander, A. Rohlmann, and G. Bergmann, \"Influence\nof different artificial disc kinematics on spine\nbiomechanics,\" Clinical biomechanics, vol. 24, no. 2,\npp. 135–142, 2009.\n[31] A. Kiapour, D. Ambati, R. W. Hoy, and V. K. Goel,\n\"Effect of graded facetectomy on biomechanics of\ndynesys dynamic stabilization system,\" Spine, vol. 37,\nno. 10, pp. E581–E589, 2012.\n[32] M. J. PEARCY and N. BOGDUK, \"Instantaneous\nAxes of Rotation of the Lumbar Intervertebral\nJoints,\" Spine, vol. 13, no. 9, 1988. (Online).\nAvailable: http://journals.lww.com/spinejournal/Fulltext/\n1988/09000/Instantaneous\\ Axes\\ of\\ Rotation\\ of\\\nthe\\ Lumbar.11.aspx\n[33] M.-A. Rousseau, D. S. Bradford, T. M. Hadi, K. L.\nPedersen, and J. C. Lotz, \"The instant axis of rotation\ninfluences facet forces at L5/S1 during flexion/extension\nand lateral bending.\" European spine journal : official\npublication of the European Spine Society, the European\nSpinal Deformity Society, and the European Section\nof the Cervical Spine Research Society, vol. 15,\nno. 3, pp. 299–307, Mar. 2006. (Online). Available:\nhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?\nartid=3489304\\&tool=pmcentrez\\&rendertype=abstract\n[34] P. Bifulco, M. Cesarelli, T. Cerciello, and M. Romano,\n\"A continuous description of intervertebral motion by\nmeans of spline interpolation of kinematic data extracted\nby videofluoroscopy.\" Journal of biomechanics, vol. 45,\nno. 4, pp. 634–41, Feb. 2012. (Online). Available:\nhttp://www.ncbi.nlm.nih.gov/pubmed/22277152\n[35] Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B.,\nMarchesseau, S., Talbot, H., Courtecuisse, H., Bousquet,\nG., Peterlik, I. and Cotin S., \"SOFA: A Multi-Model\nFramework for Interactive Physical Simulation,\" Soft\nTissue Biomechanical Modeling for Computer Assisted\nSurgery, vol. 11, pp. 283–321, 2012.\n[36] A. Shirazi-Adl and M. Parnianpour, \"Load-bearing and\nstress analysis of the human spine under a novel\nwrapping compression loading,\" Clinical Biomechanics,\nvol. 15, no. 10, pp. 718–725, 2000."]}