1. Ancestral sequence reconstruction dissects structural and functional differences among eosinophil ribonucleases.
- Author
-
Tran TTQ, Narayanan C, Loes AN, Click TH, Pham NTH, Létourneau M, Harms MJ, Calmettes C, Agarwal PK, and Doucet N
- Subjects
- Humans, Amino Acid Sequence, Evolution, Molecular, Ribonucleases metabolism, Ribonucleases chemistry, Ribonucleases genetics, Animals, Macaca fascicularis, Phylogeny, Models, Molecular, Protein Structure, Tertiary, Eosinophils metabolism, Eosinophils enzymology
- Abstract
Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF