8 results on '"De Battisti D"'
Search Results
2. Detriti spiaggiati come possibile veicolo di virus: contaminazione e sopravvivenza
- Author
-
Carducci, A., Federigi, I., Balestri, E., Lardicci, C., Castelli, A., Maltagliati, F., Hongrui, Z., Menicagli, V., Valente, R., DE BATTISTI, D., and Verani, M.
- Published
- 2022
3. Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services
- Author
-
De Battisti, D., Fowler, M.S., Jenkins, S.R., Skov, M.W., Bouma, T.J., Neyland, P.J., Griffin, J.N., De Battisti, D., Fowler, M.S., Jenkins, S.R., Skov, M.W., Bouma, T.J., Neyland, P.J., and Griffin, J.N.
- Abstract
1. The plant economic spectrum (PES) predicts a suite of correlated traits in a continuum from resource conservation to rapid resource acquisition. In addition to competing for resources, plants need to cope with other environmental stresses to persist and reproduce. Yet, it is unclear how multiple strategies (i.e. traits uncorrelated with the PES) affect plant biomass allocation, hindering our ability to connect environmental gradients to ecosystem services.2. We examined intraspecific dimensionality of leaf and root traits in the salt marsh pioneer species Spartina anglica across salinity, redox and sand content gradients, and related them to above‐ground and below‐ground plant biomass—properties associated with wave attenuation and sediment stabilization in coastal marshes.3. Through principal component analysis, we did not find support for a single PES trait dimension (strategy), but instead identified four trait dimensions: (a) leaf economic spectrum (LES, leaf analogue of PES); (b) fine roots‐rhizomes; (c) coarse roots; and (d) salt extrusion. Structural equation modelling showed a shift towards the conservative side of the LES under increasing salinity, while redox had a positive influence on the coarse roots dimension. In turn, these trait dimensions were strongly associated with above‐ground and below‐ground biomass (BLW biomass) allocation.4. These results indicate that under high salinity, plants will adopt a conservative strategy and will invest more in BLW biomass. Yet, high sediment redox would still allow plants to invest in above‐ground biomass. Therefore, plants' trait‐mediated biomass allocation depends on the specific combination of abiotic factors experienced at the local scale.5. Synthesis. Our study highlights the importance of considering multiple ecological strategies for understanding the effect of the environment on plants. Abiotic stresses can influence multiple trait strategy‐dimensions, with consequences for ecosystem funct
- Published
- 2020
4. Intraspecific root trait variability along environmental gradients affects salt marsh resistance to lateral erosion
- Author
-
De Battisti, D., Fowler, M.S., Jenkins, S.R., Skov, M.W., Rossi, M., Bouma, T.J., Neyland, P.J., Griffin, J.N., De Battisti, D., Fowler, M.S., Jenkins, S.R., Skov, M.W., Rossi, M., Bouma, T.J., Neyland, P.J., and Griffin, J.N.
- Abstract
Recent studies in salt marshes have demonstrated the role of plant roots in sedimentstabilisation, and hence the importance of marshes in providing coastal protection.However, the relative role of root traits and environmental factors in controlling sedimentstability, and how intraspecific variability of root traits vary within and among marshes,remain poorly understood. In this study, we investigated which root trait(s) drive sedimentstability (resistance to lateral erosion) in two marsh species with an important role incoastal protection (Spartina anglica and Atriplex portulacoides) and how the environmentaffects the expression of these traits. We sampled three marshes along salinity gradientsin each of two estuaries in Wales (UK), establishing replicate plots in the respectivedominant zones of each species. In all plots we sampled abiotic variables (sand, redoxpotential, pH, salinity) and root traits (root density, specific root density, root volume, rootlength density); in a subset of these plots (three per species in each marsh) we extractedsoil-plant cores and assessed their erosion resistance in a flume. Sediment stability wasenhanced by increases in root density and reductions in sand content. Abiotic variablesaffected root density in different ways depending on species: in S. anglica, redox was theonly significant factor, with a positive, linear effect on root density; in A. portulacoides,redox had a non-linear (U-shaped) effect on root density, while sand had a negativeeffect. Collectively, these results show that (i) intraspecific variability in root density caninfluence sediment stability in salt marshes, and (ii) sediment properties not only influencesediment stability directly, but also indirectly via root density. These results shed lighton spatial variability in the stability of salt marshes to lateral erosion and suggest thatroot density should be incorporated into coastal vegetation monitoring programs as aneasy-to-measure root trait that links the
- Published
- 2019
5. Wrack enhancement of post-hurricane vegetation and geomorphological recovery in a coastal dune.
- Author
-
Joyce MA, Crotty SM, Angelini C, Cordero O, Ortals C, de Battisti D, and Griffin JN
- Subjects
- Florida, Poaceae physiology, Wetlands, Cyclonic Storms, Ecosystem
- Abstract
Coastal ecosystems such as sand dunes, mangrove forests, and salt marshes provide natural storm protection for vulnerable shorelines. At the same time, storms erode and redistribute biological materials among coastal systems via wrack. Yet how such cross-ecosystem subsidies affect post-storm recovery is not well understood. Here, we report an experimental investigation into the effect of storm wrack on eco-geomorphological recovery of a coastal embryo dune in north-eastern Florida, USA, following hurricane Irma. We contrasted replicated 100-m2 wrack-removal and unmanipulated (control) plots, measuring vegetation and geomorphological responses over 21 months. Relative to controls, grass cover was reduced 4-fold where diverse storm wrack, including seagrass rhizomes, seaweed, and wood, was removed. Wrack removal was also associated with a reduction in mean elevation, which persisted until the end of the experiment when removal plots had a 14% lower mean elevation than control plots. These results suggest that subsides of wrack re-distributed from other ecosystem types (e.g. seagrasses, macroalgae, uplands): i) enhances the growth of certain dune-building grasses; and ii) boosts the geomorphological recovery of coastal dunes. Our study also indicates that the practice of post-storm beach cleaning to remove wrack-a practice widespread outside of protected areas-may undermine the resilience of coastal dunes and their services., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
6. Substrate Type Influences the Structure of Epiphyte Communities and the Growth of Posidonia oceanica Seedlings.
- Author
-
De Battisti D, Balestri E, Pardi G, Menicagli V, and Lardicci C
- Abstract
Epiphytes colonizing adult seagrasses highly contribute to seagrass ecosystem functioning and plant growth. Yet, little information exists on epiphytic communities developing on seagrass seedlings. Moreover, for some species our knowledge about seedling performance is limited to early establishment phases, and the role of substrate type in affecting their growth is still unclear. These are considerable knowledge gaps, as seedlings play an important role in meadow expansion and recovery from disturbance. In this study, seedlings of Posidonia oceanica , a keystone species of the Mediterranean, were grown in a shallow (1.5 m deep) coastal area along the Tuscany coast (Italy). After five years of growth (July 2009), seedlings were collected and, through multivariate analysis, we examined whether the epiphytic communities of leaves (both internal and external side) and rhizomes, as well as the growth characteristics differed between rock and sand substrate. The epiphytic communities of seedlings largely reflected those found on adult shoots. Epiphyte cover was similar between the two leaf sides, and it was higher on seedlings grown on rock than on sand, with encrusting algae dominating the community. No differences in epiphyte cover and community structure on rhizomes were found between substrates. Seedling growth characteristics did not differ between substrates, apart from the number of standing leaves being higher on rock than on sand. No correlation was found among epiphyte communities and seedling growth variables (i.e., leaf area, maximum leaf length, number of leaves, total number of leaves produced, rhizome length, total biomass, and root to shoot biomass ratio). Results indicate that epiphytes successfully colonize P. oceanica seedlings, and the surrounding micro-environment (i.e., substrate type) can influence the leaf epiphytic community. This study provides new valuable insights on the biological interactions occurring in seagrass ecosystems and highlights the need for better understanding the effects of seedling epiphytes and substrate on the formation of new meadows., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright 2021 De Battisti, Balestri, Pardi, Menicagli and Lardicci.)
- Published
- 2021
- Full Text
- View/download PDF
7. Below-ground biomass of plants, with a key contribution of buried shoots, increases foredune resistance to wave swash.
- Author
-
De Battisti D and Griffin JN
- Subjects
- Animals, Biomass, Environment, Humans, Poaceae, Ecosystem, Plants
- Abstract
Background and Aims: Sand dunes reduce the impact of storms on shorelines and human infrastructure. The ability of these ecosystems to provide sustained coastal protection under persistent wave attack depends on their resistance to erosion. Although flume experiments show that roots of perennial plants contribute to foredune stabilization, the role of other plant organs, and of annual species, remains poorly studied. Furthermore, it remains unknown if restored foredunes provide the same level of erosion resistance as natural foredunes. We investigated the capacity of three widespread pioneer foredune species (the perennial Ammophila arenaria and the annuals Cakile maritima and Salsola kali) to resist dune erosion, and compared the erosion resistance of Ammophila at natural and restored sites., Methods: Cores collected in the field were tested in a flume that simulated a wave swash. A multi-model inference approach was used to disentangle the contributions of different below-ground compartments (i.e. roots, rhizomes, buried shoots) to erosion resistance., Key Results: All three species reduced erosion, with Ammophila having the strongest effect (36 % erosion reduction versus unvegetated cores). Total below-ground biomass (roots, rhizomes and shoots), rather than any single compartment, most parsimoniously explained erosion resistance. Further analysis revealed that buried shoots had the clearest individual contribution. Despite similar levels of total below-ground biomass, coarser sediment reduced erosion resistance of Ammophila cores from the restored site relative to the natural site., Conclusions: The total below-ground biomass of both annual and perennial plants, including roots, rhizomes and buried shoots, reduced dune erosion under a swash regime. Notably, we show that (1) annual pioneer species offer erosion protection, (2) buried shoots are an important plant component in driving sediment stabilization, and (3) management must consider both biological (plants and their traits) and physical (grain size) factors when integrating dunes into schemes for coastal protection., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
8. Transepithelial transport of P-glycoprotein substrate by the Malpighian tubules of the desert locust.
- Author
-
Rossi M, De Battisti D, and Niven JE
- Subjects
- Animals, Biological Transport, Body Fluids metabolism, Grasshoppers anatomy & histology, Ion Transport, Kinetics, Malpighian Tubules anatomy & histology, Xenobiotics metabolism, ATP Binding Cassette Transporter, Subfamily B, Member 1 metabolism, Grasshoppers physiology, Malpighian Tubules metabolism, Transendothelial and Transepithelial Migration
- Abstract
Extrusion of xenobiotics is essential for allowing animals to remove toxic substances present in their diet or generated as a biproduct of their metabolism. By transporting a wide range of potentially noxious substrates, active transporters of the ABC transporter family play an important role in xenobiotic extrusion. One such class of transporters are the multidrug resistance P-glycoprotein transporters. Here, we investigated P-glycoprotein transport in the Malpighian tubules of the desert locust (Schistocerca gregaria), a species whose diet includes plants that contain toxic secondary metabolites. To this end, we studied transporter physiology using a modified Ramsay assay in which ex vivo Malpighian tubules are incubated in different solutions containing the P-glycoprotein substrate dye rhodamine B in combination with different concentrations of the P-glycoprotein inhibitor verapamil. To determine the quantity of the P-glycoprotein substrate extruded we developed a simple and cheap method as an alternative to liquid chromatography-mass spectrometry, radiolabelled alkaloids or confocal microscopy. Our evidence shows that: (i) the Malpighian tubules contain a P-glycoprotein; (ii) tubule surface area is positively correlated with the tubule fluid secretion rate; and (iii) as the fluid secretion rate increases so too does the net extrusion of rhodamine B. We were able to quantify precisely the relationships between the fluid secretion, surface area, and net extrusion. We interpret these results in the context of the life history and foraging ecology of desert locusts. We argue that P-glycoproteins contribute to the removal of xenobiotic substances from the haemolymph, thereby enabling gregarious desert locusts to maintain toxicity through the ingestion of toxic plants without suffering the deleterious effects themselves., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.