1. Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes
- Author
-
Widanalage Dhammika Widanage, Stéphanie Pouget, Christopher L. Berhaut, Lukas Helfen, David Aradilla, Sandrine Lyonnard, Samuel Tardif, Fereshteh Falah Chamasemani, Thomas Vorauer, Bernd Fuchsbichler, Selcuk Atalay, Pierre-Henri Jouneau, Roland Brunner, Stefan Koller, Praveen Kumar, Montanuniversität Leoben (MUL), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Leibniz Institute for New Materials (INM), Leibniz Association, Nanostructures et Rayonnement Synchrotron (NRS ), Service Général des Rayons X (SGX ), Varta Micro Innovation GmbH, Karlsruhe Institute of Technology (KIT), Warwick Manufacturing Group [Coventry] (WMG), University of Warwick [Coventry], European Project: 685716,H2020,H2020-NMP-2015-two-stage,SINTBAT(2016), and European Project: 875514,ECO2LIB
- Subjects
Amorphous silicon ,Technology ,Materials science ,MATERIALS RESEARCH ,Alloy ,Composite number ,Li-ion batteries ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,tomography ,engineering.material ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Biochemistry ,lcsh:Chemistry ,chemistry.chemical_compound ,BATTERY MATERIALS ,Phase (matter) ,Materials Chemistry ,Environmental Chemistry ,SAXS-WAXS ,Nanoscopic scale ,PHASE CONTRAST MICROTOMOGRAPHY ,advanced characterization ,General Chemistry ,simulation ,021001 nanoscience & nanotechnology ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,0104 chemical sciences ,Anode ,Characterization (materials science) ,lcsh:QD1-999 ,chemistry ,BATTERY ELECTRODE ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,Lithium ,0210 nano-technology ,ddc:600 ,LI IONIC CONDUCTORS - Abstract
Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi2 nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi2) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to μm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input. We obtain a quantified insight into the inhomogeneous lithiation of the active material induced by the morphology changes due to cycling. The electrochemical performance of Li-ion batteries does not only depend on the active material used, but also on the architecture of its proximity. Alloy systems like Si/FeSi2 nano composites have great potential as stable anode materials in Li-ion batteries, but their characterization at different scales and throughout their ageing remains challenging. Here the authors use scattering and 2D/3D imaging techniques combined with modeling to elucidate morphology changes upon cycling of the anode.
- Published
- 2020
- Full Text
- View/download PDF