1. Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway.
- Author
-
Miao ZF, Sun JX, Huang XZ, Bai S, Pang MJ, Li JY, Chen HY, Tong QY, Ye SY, Wang XY, Hu XH, Li JY, Zou JW, Xu W, Yang JH, Lu X, Mills JC, and Wang ZN
- Subjects
- Animals, Mice, Mitochondria metabolism, NF-E2-Related Factor 2 metabolism, NF-E2-Related Factor 2 genetics, Gastric Mucosa metabolism, Mice, Inbred C57BL, Chief Cells, Gastric metabolism, Acinar Cells metabolism, Mice, Knockout, Phospholipid Hydroperoxide Glutathione Peroxidase, Intercellular Signaling Peptides and Proteins, Reactive Oxygen Species metabolism, Ferroptosis physiology, Stomach pathology, Regeneration physiology, Amino Acid Transport System y+ metabolism, Amino Acid Transport System y+ genetics, Metaplasia metabolism, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha metabolism, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha genetics
- Abstract
In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a
-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF