1. A three-step methodology for dimensional tolerance synthesis of parallel manipulators
- Author
-
Stéphane Caro, Alexandre Goldsztejn, Gilles Chabert, Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique de Nantes Atlantique (LINA), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), and Mines Nantes (Mines Nantes)
- Subjects
0209 industrial biotechnology ,Mathematical optimization ,Mechanical Engineering ,Parallel manipulator ,Bioengineering ,02 engineering and technology ,Workspace ,Upper and lower bounds ,parametric Kantorovich theorem ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph] ,Computer Science Applications ,Nonlinear programming ,Nonlinear system ,020901 industrial engineering & automation ,Mechanics of Materials ,parallel manipulators ,Kantorovich theorem ,0202 electrical engineering, electronic engineering, information engineering ,Applied mathematics ,020201 artificial intelligence & image processing ,Certified tolerance synthesis ,Global optimization ,Mathematics ,Parametric statistics - Abstract
International audience; Computing the maximal pose error given an upper bound on model parameters uncertainties, called perturbations in this paper, is challenging for parallel robots, mainly because the direct kinematic problem has several solutions, which become unstable in the vicinity of parallel singularities. In this paper, a local uniqueness hypothesis that allows safely computing pose error upper bounds using nonlinear optimization is proposed. This hypothesis, together with a corresponding maximal allowed perturbation domain and a certified crude pose error upper bound valid over the complete workspace, will be proved numerically using a parametric version of Kantorovich theorem and certified nonlinear global optimization. Then, approximate linearizations are used in order to determine approximated tolerances reaching a prescribed maximal pose error over a given workspace. Those tolerances are finally verified using optimal pose error upper bounds, which are computed using global optimization techniques. Two illustrative examples are studied in order to highlight the contributions of the paper.
- Published
- 2016
- Full Text
- View/download PDF