10 results on '"Brian MS"'
Search Results
2. Adjusting for muscle strength and body size attenuates sex differences in the exercise pressor reflex in young adults.
- Author
-
Tharpe MA, Linder BA, Babcock MC, Watso JC, Pollin KU, Hutchison ZJ, Barnett AM, Culver MN, Kavazis AN, Brian MS, and Robinson AT
- Subjects
- Humans, Male, Female, Young Adult, Reflex, Blood Pressure physiology, Sympathetic Nervous System, Ischemia, Body Size, Muscle, Skeletal innervation, Heart Rate, Hand Strength physiology, Sex Characteristics
- Abstract
Females typically exhibit lower blood pressure (BP) during exercise than males. However, recent findings indicate that adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI; metaboreflex isolation). In addition, body size is associated with HG strength but its contribution to sex differences in exercising BP is less appreciated. Therefore, the purpose of this study was to determine whether adjusting for strength and body size would attenuate sex differences in BP during HG and PEI. We obtained beat-to-beat BP in 110 participants (36 females, 74 males) who completed 2 min of isometric HG exercise at 40% of their maximal voluntary contraction followed by 3 min of PEI. In a subset (11 females, 17 males), we collected muscle sympathetic nerve activity (MSNA). Statistical analyses included independent t tests and mixed models (sex × time) with covariate adjustment for 40% HG force, height
2 , and body surface area. Females exhibited a lower absolute 40% HG force than male participants ( Ps < 0.001). Females exhibited lower Δsystolic, Δdiastolic, and Δmean BPs during HG and PEI than males (e.g., PEI, Δsystolic BP, 15 ± 11 vs. 23 ± 14 mmHg; P = 0.004). After covariate adjustment, sex differences in BP responses were attenuated. There were no sex differences in MSNA. In a smaller strength-matched cohort, there was no sex × time interactions for BP responses (e.g., PEI systolic BP, P = 0.539; diastolic BP, P = 0.758). Our data indicate that sex differences in exercising BP responses are attenuated after adjusting for muscle strength and body size. NEW & NOTEWORTHY When compared with young males, females typically exhibit lower blood pressure (BP) during exercise. Adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI), but the contribution of body size is unknown. Novel findings include adjustments for muscle strength and body size attenuate sex differences in BP reactivity during exercise and PEI, and sex differences in body size contribute to HG strength differences.- Published
- 2023
- Full Text
- View/download PDF
3. The Relationship between Sleep Duration and Metabolic Syndrome Severity Scores in Emerging Adults.
- Author
-
Chaudhry BA, Brian MS, and Morrell JS
- Subjects
- Male, Female, Young Adult, Humans, Sleep Duration, Cross-Sectional Studies, Sleep physiology, Smoking epidemiology, Risk Factors, Metabolic Syndrome epidemiology
- Abstract
Background: Research suggests sleep duration can influence metabolic systems including glucose homeostasis, blood pressure, hormone regulation, nervous system activity, and total energy expenditure (TEE), all of which are related to cardiometabolic disease risk, even in young adults. The purpose of this study was to examine the relationship between sleep duration and metabolic syndrome severity scores (MSSS) in a sample of emerging adults (18-24 y/o)., Methods: Data were collected between 2012 and 2021 from the College Health and Nutrition Assessment Survey, an ongoing, cross-sectional study conducted at a midsized northeastern university. Anthropometric, biochemical, and clinical measures were obtained following an overnight fast and used to assess the prevalence of metabolic syndrome (MetS). MetS severity scores (MSSS) were calculated using race- and sex-specific formulas. Sleep duration was calculated from the difference in self-reported bedtime and wake time acquired through an online survey. ANCOVA was used to examine the relationship between sleep duration and MetS severity score while adjusting for covariates (age, sex, BMI, physical activity level, smoking status, alcohol consumption, and academic major)., Results: In the final sample ( n = 3816), MetS (≥3 criteria) was present in 3.3% of students, while 15.4% of students presented with ≥2 MetS criteria. Mean MSSS was -0.65 ± 0.56, and the reported sleep duration was 8.2 ± 1.3 h/day. MSSS was higher among low sleepers (<7 h/day) and long sleepers (>9 h/day) compared to the reference sleepers (7-8 h/day) (-0.61 ± 0.02 and -0.63 ± 0.01 vs. -0.7 ± 0.02, respectively, p < 0.01)., Conclusions: Our findings suggest short (<7 h/day) and long (>9 h/day) sleep durations raise the risk of MetS in a sample of emerging adults. Further research is needed to elucidate the impact of improving sleep habits on future disease risk.
- Published
- 2023
- Full Text
- View/download PDF
4. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans.
- Author
-
Ramick MG, Brian MS, Matthews EL, Patik JC, Seals DR, Lennon SL, Farquhar WB, and Edwards DG
- Subjects
- Adult, Biomarkers metabolism, Blood Flow Velocity, Endothelial Cells metabolism, Female, Forearm, Humans, Male, Middle Aged, NADP antagonists & inhibitors, NADP metabolism, Reactive Oxygen Species metabolism, Spin Labels, Time Factors, Tyrosine analogs & derivatives, Tyrosine metabolism, Young Adult, Acetophenones pharmacology, Antioxidants pharmacology, Cyclic N-Oxides pharmacology, Endothelial Cells drug effects, Microcirculation drug effects, Oxidative Stress drug effects, Skin blood supply, Sodium Chloride, Dietary adverse effects, Vasodilation drug effects
- Abstract
It has previously been shown that high dietary salt impairs vascular function independent of changes in blood pressure. Rodent studies suggest that NADPH-derived reactive oxygen species mediate the deleterious effect of high salt on the vasculature, and here we translate these findings to humans. Twenty-nine healthy adults (34 ± 2 yr) participated in a controlled feeding study. Participants completed 7 days of a low-sodium diet (LS; 20 mmol sodium/day) and 7 days of a high-sodium diet (HS; 300 mmol sodium/day) in random order. All participants were salt resistant, defined as a ≤5-mmHg change in 24-h mean BP determined while on the LS and HS diets. Laser Doppler flowmetry was used to assess cutaneous vasodilation in response to local heating (42°C) during local delivery of Ringer's ( n = 29), 20 mM ascorbic acid (AA; n = 29), 10 µM Tempol ( n = 22), and 100 µM apocynin ( n = 22). Additionally, endothelial cells were obtained in a subset of participants from an antecubital vein and stained for nitrotyrosine ( n = 14). Cutaneous vasodilation was attenuated by the HS diet compared with LS [LS 93.0 ± 2.2 vs. HS 86.8 ± 2.0 percentage of maximal cutaneous vascular conductance (%CVC
max) ; P < 0.05] and was restored by AA during the HS diet (AA 90.7 ± 1.2 %CVCmax ; P < 0.05 vs. HS). Cutaneous vasodilation was also restored with the local infusion of both apocynin ( P < 0.01) and Tempol ( P < 0.05) on the HS diet. Nitrotyrosine expression was increased on the HS diet compared with LS ( P < 0.05). These findings provide direct evidence of dietary sodium-induced endothelial cell oxidative stress and suggest that NADPH-derived reactive oxygen species contribute to sodium-induced declines in microvascular function. NEW & NOTEWORTHY High-sodium diets have deleterious effects on vascular function, likely mediating, in part, the increased cardiovascular risk associated with a high sodium intake. Local infusion of apocynin and Tempol improved microvascular function in salt-resistant adults on a high-salt diet, providing evidence that reactive oxygen species contribute to impairments in microvascular function from high salt. This study provides insight into the blood pressure-independent mechanisms by which dietary sodium impairs vascular function. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/dietary-sodium-oxidative-stress-and-microvascular-function/ .- Published
- 2019
- Full Text
- View/download PDF
5. Relation between resting sympathetic outflow and vasoconstrictor responses to sympathetic nerve bursts: sex differences in healthy young adults.
- Author
-
Robinson AT, Babcock MC, Watso JC, Brian MS, Migdal KU, Wenner MM, and Farquhar WB
- Subjects
- Adult, Age Factors, Blood Flow Velocity, Female, Healthy Volunteers, Humans, Male, Regional Blood Flow, Sex Factors, Young Adult, Arterial Pressure, Muscle, Skeletal blood supply, Muscle, Skeletal innervation, Sympathetic Nervous System physiology, Vasoconstriction
- Abstract
Previous studies have demonstrated an inverse relation between resting muscle sympathetic nerve activity (MSNA) and vasoconstrictor responsiveness (i.e., sympathetic transduction), such that those with high resting MSNA have low vascular responsiveness, and vice versa. The purpose of this investigation was to determine whether biological sex influences the balance between resting MSNA and beat-to-beat sympathetic transduction. We measured blood pressure (BP) and MSNA during supine rest in 54 healthy young adults (27 females: 23 ± 4 yr, 107 ± 8/63 ± 8 mmHg; 27 males: 25 ± 3 yr, 115 ± 11/64 ± 7 mmHg; means ± SD). We quantified beat-to-beat fluctuations in mean arterial pressure (MAP, mmHg) and limb vascular conductance (LVC, %) for 10 cardiac cycles after each MSNA burst using signal averaging, an index of sympathetic vascular transduction. In females, there was no correlation between resting MSNA (burst incidence; burst/100 heartbeats) and peak ΔMAP ( r = -0.10, P = 0.62) or peak ΔLVC ( r = -0.12, P = 0.63). In males, MSNA was related to peak ΔMAP ( r = -0.50, P = 0.01) and peak ΔLVC ( r = 0.49, P = 0.03); those with higher resting MSNA had blunted increases in MAP and reductions in LVC in response to a burst of MSNA. In a sub-analysis, we performed a median split between high- versus low-MSNA status on ΔMAP and ΔLVC within each sex and found that only males demonstrated a significant difference in ΔMAP and ΔLVC between high- versus low-MSNA groups. These findings support an inverse relation between resting MSNA and sympathetic vascular transduction in males only and advance our understanding on the influence of biological sex on sympathetic nervous system-mediated alterations in beat-to-beat BP regulation.
- Published
- 2019
- Full Text
- View/download PDF
6. Alterations in dietary sodium intake affect cardiovagal baroreflex sensitivity.
- Author
-
Babcock MC, Brian MS, Watso JC, Edwards DG, Stocker SD, Wenner MM, and Farquhar WB
- Subjects
- Adult, Blood Pressure, Female, Heart Rate, Humans, Infusions, Intravenous, Male, Osmolar Concentration, Saline Solution, Hypertonic administration & dosage, Saline Solution, Hypertonic metabolism, Sodium Chloride, Dietary blood, Time Factors, Young Adult, Baroreflex, Diet, Sodium-Restricted, Heart innervation, Pressoreceptors physiology, Sodium Chloride, Dietary adverse effects, Vagus Nerve physiology
- Abstract
High dietary sodium intake has been linked to alterations in neurally mediated cardiovascular function, but the effects of high sodium on cardiovagal baroreflex sensitivity (cBRS) in healthy adults are unknown. The purpose of this study was to determine whether high dietary sodium alters cBRS and heart rate variability (HRV) and whether acute intravenous sodium loading similarly alters cBRS and HRV. High dietary sodium (300 mmol/day, 7 days) was compared with low dietary sodium (20 mmol/day, 7 days; randomized) in 14 participants (38 ± 4 yr old, 23 ± 1 kg/m
2 body mass index, 7 women). Acute sodium loading was achieved via a 23-min intravenous hypertonic saline infusion (HSI) in 14 participants (22 ± 1 yr old, 23 ± 1 kg/m2 body mass index, 7 women). During both protocols, participants were supine for 5 min during measurement of beat-to-beat blood pressure (photoplethysmography) and R-R interval (ECG). cBRS was evaluated using the sequence method. Root mean square of successive differences in R-R interval (RMSSD) was used as an index of HRV. Serum sodium (137.4 ± 0.7 vs. 139.9 ± 0.5 meq/l, P < 0.05), plasma osmolality (285 ± 1 vs. 289 ± 1 mosmol/kgH2 O, P < 0.05), cBRS (18 ± 2 vs. 26 ± 3 ms/mmHg, P < 0.05), and RMSSD (62 ± 6 vs. 79 ± 10 ms, P < 0.05) were increased following high-sodium diet intake compared with low-sodium diet intake. HSI increased serum sodium (138.1 ± 0.4 vs. 141.1 ± 0.5 meq/l, P < 0.05) and plasma osmolality (286 ± 1 vs. 290 ± 1 mosmol/kgH2 O, P < 0.05) but did not change cBRS (26 ± 5 vs. 25 ± 3 ms/mmHg, P = 0.73) and RMSSD (63 ± 9 vs. 63 ± 8 ms, P = 0.99). These data suggest that alterations in dietary sodium intake alter cBRS and HRV but that acute intravenous sodium loading does not alter these indexes of autonomic cardiovascular regulation.- Published
- 2018
- Full Text
- View/download PDF
7. The influence of acute elevations in plasma osmolality and serum sodium on sympathetic outflow and blood pressure responses to exercise.
- Author
-
Brian MS, Matthews EL, Watso JC, Babcock MC, Wenner MM, Rose WC, Stocker SD, and Farquhar WB
- Subjects
- Adult, Female, Hand Strength physiology, Humans, Male, Osmolar Concentration, Young Adult, Blood Pressure physiology, Exercise physiology, Muscle, Skeletal physiology, Plasma chemistry, Saline Solution, Hypertonic administration & dosage, Sodium blood, Sympathetic Nervous System physiology
- Abstract
Elevated plasma osmolality (pOsm) has been shown to increase resting sympathetic nerve activity in animals and humans. The present study tested the hypothesis that increases in pOsm and serum sodium (sNa
+ ) concentration would exaggerate muscle sympathetic nerve activity (MSNA) and blood pressure (BP) responses to handgrip (HG) exercise and postexercise ischemia (PEI). BP and MSNA were measured during HG followed by PEI before and after a 23-min hypertonic saline infusion (HSI-3% NaCl). Eighteen participants (age 23 ± 1 yr; BMI 24 ± 1 kg/m2 ) completed the protocol; pOsm and sNa+ increased from pre- to post-HSI (285 ± 1 to 291 ± 1 mosmol/kg H2 O; 138.2 ± 0.3 to 141.3 ± 0.4 mM; P < 0.05 for both). Resting mean BP (90 ± 2 vs. 92 ± 1 mmHg) and MSNA (11 ± 2 vs. 15 ± 2 bursts/min) were increased pre- to post-HSI ( P < 0.05 for both). Mean BP responses to HG (106 ± 2 vs. 111 ± 2 mmHg, P < 0.05) and PEI (102 ± 2 vs. 107 ± 2 mmHg, P < 0.05) were higher post-HSI. Similarly, MSNA during HG (20 ± 2 vs. 29 ± 2 bursts/min, P < 0.05) and PEI (19 ± 2 vs. 24 ± 3 bursts/min, P < 0.05) were greater post-HSI. In addition, the change in MSNA was greater post-HSI during HG (Δ9 ± 2 vs. Δ13 ± 3 bursts/min, P < 0.05). A second set of participants ( n = 13, age 23 ± 1 yr; BMI 24 ± 1 kg/m2 ) completed a time control (TC) protocol consisting of quiet rest instead of an infusion. The TC condition yielded no change in resting sNa+ , pOsm, mean BP, or MSNA (all P > 0.05); responses to HG and PEI were not different pre- to post-quiet rest ( P > 0.05). In summary, acutely increasing pOsm and sNa+ exaggerates BP and MSNA responses during HG exercise and PEI. NEW & NOTEWORTHY Elevated plasma osmolality has been shown to increase resting sympathetic activity and blood pressure. This study provides evidence that acute elevations in plasma osmolality and serum sodium exaggerated muscle sympathetic nerve activity and blood pressure responses during exercise pressor reflex activation in healthy young adults.- Published
- 2018
- Full Text
- View/download PDF
8. Dietary sodium and nocturnal blood pressure dipping in normotensive men and women.
- Author
-
Brian MS, Dalpiaz A, Matthews EL, Lennon-Edwards S, Edwards DG, and Farquhar WB
- Subjects
- Adult, Female, Healthy Volunteers, Humans, Male, Random Allocation, Blood Pressure, Circadian Rhythm, Sodium, Dietary adverse effects
- Abstract
Impaired nocturnal blood pressure (BP) dipping (i.e., <10% decline in nocturnal BP) is associated with an increased risk of cerebrovascular and cardiovascular diseases. Excess sodium has been shown to impair BP regulation and increase cardiovascular disease risk, yet few studies have assessed the influence of dietary sodium on nocturnal dipping in normotensive adults. The purpose of this study was to determine the effects of dietary sodium on BP dipping in normotensive men and women. Eighty healthy normotensive adults participated in a controlled feeding study (men: n=39, 34±2 years; women: n=41, 41±2 years). Participants consumed a standardized run-in 100 mmol sodium per day diet for 7 days, followed by 7 days of low-sodium (LS; 20 mmol per day) and high-sodium (HS; 300 mmol per day) diets in random order. On the final day of each diet, subjects wore a 24 h ambulatory BP monitor, collected a 24 h urine sample and provided a blood sample. During the run-in diet, 24 h urinary sodium excretion was 79.4±5.1 mmol per 24 h in men and 85.3±5.5 mmol per 24 h in women (P>0.05). Systolic BP dipping was not different between men (11.4±1.0%) and women (11.2±0.9%); (P>0.05). During the HS diet, 24 h urinary sodium excretion increased compared with the LS diet in men (LS=31.7±4.6 mmol per 24 h vs HS=235.0±13.9 mmol per 24 h, P<0.01) and women (LS=25.8±2.2 mmol per 24 h vs HS=234.7±13.8 mmol per 24 h, P<0.01). Despite this large increase in sodium intake and excretion, systolic BP dipping was not blunted in men (LS=8.9±1.0% vs HS=9.4±1.2%, P>0.05) or women (LS=10.3±0.8% vs HS=10.5±0.8%, P>0.05). Among normotensive men and women, HS does not blunt nocturnal BP dipping., Competing Interests: No conflicts of interest were declared by the authors.
- Published
- 2017
- Full Text
- View/download PDF
9. Peripheral venous distension elicits a blood pressure raising reflex in young and middle-aged adults.
- Author
-
Matthews EL, Brian MS, Coyle DE, Edwards DG, Stocker SD, Wenner MM, and Farquhar WB
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Stress, Mechanical, Tensile Strength physiology, Vascular Resistance physiology, Veins innervation, Aging physiology, Baroreflex physiology, Blood Pressure physiology, Sympathetic Nervous System physiology, Vasodilation physiology, Veins physiology
- Abstract
Distension of peripheral veins in humans elicits a pressor and sympathoexcitatory response that is mediated through group III/IV skeletal muscle afferents. There is some evidence that autonomic reflexes mediated by these sensory fibers are blunted with increasing age, yet to date the venous distension reflex has only been studied in young adults. Therefore, we tested the hypothesis that the venous distension reflex would be attenuated in middle-aged compared with young adults. Nineteen young (14 men/5 women, 25 ± 1 yr) and 13 middle-aged (9 men/4 women, 50 ± 2 yr) healthy normotensive participants underwent venous distension via saline infusion through a retrograde intravenous catheter in an antecubital vein during limb occlusion. Beat-by-beat blood pressure, muscle sympathetic nerve activity (MSNA), and model flow-derived cardiac output (Q), and total peripheral resistance (TPR) were recorded throughout the trial. Mean arterial pressure (MAP) increased during the venous distension in both young (baseline 83 ± 2, peak 94 ± 3 mmHg; P < 0.05) and middle-aged adults (baseline 88 ± 2, peak 103 ± 3 mmHg; P < 0.05). MSNA also increased in both groups [young: baseline 886 ± 143, peak 1,961 ± 242 arbitrary units (AU)/min; middle-aged: baseline 1,164 ± 225, peak 2,515 ± 404 AU/min; both P < 0.05]. TPR (P < 0.001), but not Q (P = 0.76), increased during the trial. However, the observed increases in blood pressure, MSNA, and TPR were similar between young and middle-aged adults. Additionally, no correlation was found between age and the response to venous distension (all P > 0.05). These findings suggest that peripheral venous distension elicits a pressor and sympathetic response in middle-aged adults similar to the response observed in young adults., (Copyright © 2016 the American Physiological Society.)
- Published
- 2016
- Full Text
- View/download PDF
10. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure.
- Author
-
Matthews EL, Brian MS, Ramick MG, Lennon-Edwards S, Edwards DG, and Farquhar WB
- Subjects
- Adult, Arterial Pressure drug effects, Diet, Diet, Sodium-Restricted, Endothelium, Vascular drug effects, Female, Healthy Volunteers, Humans, Male, Middle Aged, Regional Blood Flow drug effects, Young Adult, Blood Pressure drug effects, Brachial Artery drug effects, Sodium, Dietary pharmacology, Vasodilation drug effects
- Abstract
Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR -0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP., (Copyright © 2015 the American Physiological Society.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.