1. Amino acid-linked platinum(II) compounds: non-canonical nucleoside preferences and influence on glycosidic bond stabilities
- Author
-
Jun Jiang, M. T. Rodgers, C. C. He, Xun Bao, Christine S. Chow, Bett Kimutai, Andrew Roberts, Marcel L Jones, and Zhihua Yang
- Subjects
Ornithine ,Purine ,Organoplatinum Compounds ,Stereochemistry ,Guanosine ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Nucleobase ,Inorganic Chemistry ,chemistry.chemical_compound ,Deoxyadenosine ,Deoxyguanosine ,Glycosides ,chemistry.chemical_classification ,Original Paper ,Alanine ,010405 organic chemistry ,Glycosidic bond ,Purine Nucleosides ,3. Good health ,0104 chemical sciences ,Glycosidic bonds ,Kinetics ,chemistry ,Cisplatin ,Nucleoside ,DNA ,Amino acid-linked platinum(II) compounds ,Adenosine adduct - Abstract
Nucleobases serve as ideal targets where drugs bind and exert their anticancer activities. Cisplatin (cisPt) preferentially coordinates to 2′-deoxyguanosine (dGuo) residues within DNA. The dGuo adducts that are formed alter the DNA structure, contributing to inhibition of function and ultimately cancer cell death. Despite its success as an anticancer drug, cisPt has a number of drawbacks that reduce its efficacy, including repair of adducts and drug resistance. Some approaches to overcome this problem involve development of compounds that coordinate to other purine nucleobases, including those found in RNA. In this work, amino acid-linked platinum(II) (AAPt) compounds of alanine and ornithine (AlaPt and OrnPt, respectively) were studied. Their reactivity preferences for DNA and RNA purine nucleosides (i.e., 2′-deoxyadenosine (dAdo), adenosine (Ado), dGuo, and guanosine (Guo)) were determined. The chosen compounds form predominantly monofunctional adducts by reacting at the N1, N3, or N7 positions of purine nucleobases. In addition, features of AAPt compounds that impact the glycosidic bond stability of Ado residues were explored. The glycosidic bond cleavage is activated differentially for AlaPt-Ado and OrnPt-Ado isomers. Formation of unique adducts at non-canonical residues and subsequent destabilization of the glycosidic bonds are important features that could circumvent platinum-based drug resistance. Graphic abstract Electronic supplementary material The online version of this article (10.1007/s00775-019-01693-y) contains supplementary material, which is available to authorized users.
- Published
- 2019
- Full Text
- View/download PDF