212 results on '"Bates, N"'
Search Results
2. On the relationships between primary, net community, and export production in subtropical gyres
- Author
-
Brix, H, Gruber, N, Karl, D M, and Bates, N R
- Subjects
primary production ,particulate carbon export ,subtropical gyres ,time-series stations - Abstract
It has been proposed that net primary production (NPP), net community production (NCP), particulate organic carbon export (Phi(POC)) and the relationships among them are governed by local environmental conditions that favor either a microbially dominated assemblage leading to a regeneration loop (low ratio of (Phi(POC) to NPP) or a system dominated by large plankton with export pathway characteristics (high ratio of (Dpoc to NPP). We analyze more than 10 years of data from two subtropical time-series stations (Hawaii Ocean Times-series (HOT) in the North Pacific, and Bermuda Atlantic Time-Series (BATS) in the North Atlantic) in order to investigate this regeneration loop versus export pathway hypothesis and in particular to test the idea that the switch between the two is controlled by enhanced input of nutrients. In the decadal long-term mean, the relationships between NPP, (Dpoc and NCP, which we take here as a proxy for export production, reveal export pathway characteristics at BATS, while HOT is dominated by the regeneration loop. This difference is consistent with the stronger seasonal forcing at BATS and the resulting higher new nutrient input. However, these characteristics are only valid for parts of the year. Especially at BATS, the export pathway exists only in spring and the system reverts to a regeneration loop in summer and fall. This is consistent with our hypothesis given the strong summer-time stratification and the resulting low levels of new nutrient input. On interannual time-scales, we find little evidence for statistically significant alterations of the long-term mean characteristics, a finding we ascribe to a combination of limited magnitude of forcing, length of the data records, and possibly an inherent lack of predictability. A comparison of our results for the ratio between NCP and NPP (e-ratio) and the ratio between Phi(POC) and NPP (pe-ratio) with those predicted by the models of Laws et al. [Temperature effects on export production in the open ocean. Global Biogeochemical Cycles 14(4), 1231-1246] and Dunne et al. [Empirical and mechanistic models for particle export ratio. Global Biogeochemical Cycles 19, GB40261 respectively, show reasonable agreement for the long-term mean, but these models fail to capture the observed interannual variability in these ratios. (c) 2006 Elsevier Ltd. All rights reserved.
- Published
- 2006
3. Global Carbon Budget 2023
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2023
4. Global Carbon Budget 2022
- Author
-
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, College of Life and Environmental Sciences [Exeter], University of Exeter, Rice University [Houston], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Institute of Biogeochemistry and Pollutant Dynamics [ETH Zürich] (IBP), Department of Environmental Systems Science [ETH Zürich] (D-USYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Meteorology and Air Quality Group, Wageningen University and Research [Wageningen] (WUR), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Meteorology and Air Quality Department [Wageningen] (MAQ), Ludwig-Maximilians-Universität München (LMU), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Stanford Woods Institute for the Environment, Stanford University, European Commission - Joint Research Centre [Ispra] (JRC), Karlsruhe Institute of Technology (KIT), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Earth Sciences, Amsterdam Sustainability Institute, and Isotope Research
- Subjects
WIMEK ,[SDE.MCG]Environmental Sciences/Global Changes ,SDG 13 - Climate Action ,Life Science ,General Earth and Planetary Sciences ,Luchtkwaliteit ,Air Quality - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).
- Published
- 2022
5. Effect of the first wave of COVID-19 on Poison Control Centre activities in 21 European countries : an EAPCCT initiative
- Author
-
Hondebrink, L., Zammit, M., Høgberg, L. C. G., Hermanns-Clausen, M., Lonati, D., Faber, K., Arif, T, Babić, Z, Bacis, G, Bahtić, L, Bates, N, Brvar, M, Burbienė, E, Cagáňová, B, Casey, P, Delcourt, N, Descamps, AM, Descatha, A, Eagling, V, Eyer, F, Gambassi, F, Gray, L, Jagpal, P, Jovic-Stosic, J, Labadie, M, Lilius, T, Líndal, H, Locatelli, CA, Midtervoll, M, Nisse, P, Palmqvist, DF, Patat, AM, Pereska, Z, Puskarczyk, E, Ricci, G, Salierno, A, Simon, N, Tellerup, M, Thanacoody, R, van Velzen, A, Vodovar, D, INDIVIDRUG - Individualized Drug Therapy, HUSLAB, Medicum, Department of Diagnostics and Therapeutics, and Clinicum
- Subjects
Europe ,Public health ,Poison Control Centers ,SARS-CoV-2 ,Poisoning ,Humans ,COVID-19 ,Poison Control Centres ,General Medicine ,3111 Biomedicine ,Toxicology ,3126 Surgery, anesthesiology, intensive care, radiology ,Disinfectants - Abstract
Public health emergencies often affect Poison Control Centre (PCC) operations. We examined possible effects of the coronavirus disease 2019 (COVID-19) pandemic on call volume, call characteristics, and workload in European PCCs. All 65 individual European PCCs were requested to supply data on the number of calls and call characteristics (caller, age groups, reason and specific exposures) from March to June in 2018, 2019, and 2020 (Part 1). Number of calls with specific characteristics was normalised to all calls. Calls (N) and call characteristics (%) were compared between 2020 and 2018/2019 (average), within PCCs/countries and grouped. Correlation between call volume and COVID-19 cases per PCC/country was examined. All PCCs received a survey on workload (Part 2). Parts 1 and 2 were independent. For Part 1, 36 PCCs (21 countries) supplied 26 datasheets. PCCs in the UK and in France merged data and supplied one datasheet each with national data. Summed data showed an increase of 4.5% in call volume from 228.794 in 2018/2019 (average) to 239.170 in 2020 (p < 0.001). Within PCCs/countries, calls significantly increased for 54% of PCCs/countries (N = 14/26) and decreased for 19% (N = 5/26), three of which (N = 3/5) only serve medical professionals. Correlation between call volume and COVID-19 cases was (non-significant) positive (Rho >0.7) in 5/26 PCCs/countries (19%), and negative in 6/26 (23%). Call characteristics (median proportion of grouped data in 2018/2019 vs. 2020) changed: fewer medical professionals called (40 vs. 34%, p < 0.001), calls on intentional exposures decreased (20 vs. 17%, p < 0.012), as did calls on patients between 13 and 17 years (5 vs. 4%, p < 0.05). Calls on specific exposures increased; disinfectants from 1.9 to 5.2%, and cleaning products from 4.4 to 5.7% (p < 0.001). For Part 2, 38 PCCs (24 countries) filled the survey on workload (number/length of shifts and time on PCC duties), which increased in 23/38 PCCs (61%), while 10/38 (26%) worked with fewer employees. Obtaining aggregated European PCC data proved challenging but showed an increase in overall call volume and workload during the first COVID-19 wave. Call characteristics changed including fewer calls from professionals and more calls on specific exposures. Within single PCCs/countries a variety of effects was observed.
- Published
- 2022
6. 1428P Suicidal outcomes among cancer survivors: Examining associations with depression and non-medical pain prescriptions
- Author
-
Osazuwa-Peters, N., primary, Osazuwa-Peters, O.L., additional, Adjei Boakye, E., additional, Abouelella, D., additional, Barnes, J.M., additional, Bates, N., additional, and Ramos, K., additional
- Published
- 2022
- Full Text
- View/download PDF
7. Global Carbon Budget 2022
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2022
8. Quantifying the hospital and emergency department costs for women diagnosed with breast cancer in Queensland.
- Author
-
Lindsay, D, Bates, N, Diaz, A, Watt, K, Callander, E, Lindsay, D, Bates, N, Diaz, A, Watt, K, and Callander, E
- Abstract
PURPOSE: With increasing rates of cancer survival due to advances in screening and treatment options, the costs of breast cancer diagnoses are attracting interest. However, limited research has explored the costs to the Australian healthcare system associated with breast cancer. We aimed to describe the cost to hospital funders for hospital episodes and emergency department (ED) presentations for Queensland women with breast cancer, and whether costs varied by demographic characteristics. METHODS: We used a linked administrative dataset, CancerCostMod, limited to all breast cancer diagnoses aged 18 years or over in Queensland between July 2011 and June 2015 (n = 13,285). Each record was linked to Queensland Health Admitted Patient Data Collection and Emergency Department Information Systems records between July 2011 and June 2018. The cost of hospital episodes and ED presentations were determined, with mean costs per patient modelled using generalised linear models with a gamma distribution and log link function. RESULTS: The total cost to the Queensland healthcare system from hospital episodes for female breast cancer was AUD$309 million and AUD$12.6 million for ED presentations during the first 3 years following diagnosis. High levels of costs and service use were identified in the first 6 months following diagnosis. Some significant differences in cost of hospital and ED episodes were identified based on demographic characteristics, with Indigenous women and those from lower socioeconomic backgrounds having higher costs. CONCLUSION: Hospitalisation costs for breast cancer in Queensland exert a high burden on the healthcare system. Costs are higher for women during the first 6 months from diagnosis and for Indigenous women, as well as those with underlying comorbidities and lower socioeconomic position.
- Published
- 2022
9. Autonomous Wintertime Observations of Air‐Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO 2 Uptake
- Author
-
Nickford, S., primary, Palter, J. B., additional, Donohue, K., additional, Fassbender, A. J., additional, Gray, A. R., additional, Long, J., additional, Sutton, A. J., additional, Bates, N. R., additional, and Takeshita, Y., additional
- Published
- 2022
- Full Text
- View/download PDF
10. THE CLIMODE FIELD CAMPAIGN : Observing the Cycle of Convection and Restratification over the Gulf Stream
- Author
-
Marshall, J., Andersson, A., Bates, N., Dewar, W., Doney, S., Edson, J., Ferrari, R., Forget, G., Fratantoni, D., Gregg, M., Joyce, T., Kelly, K., Lozier, S., Lumpkin, R., Maze, G., Palter, J., Samelson, R., Silverthorne, K., Skyllingstad, E., Straneo, F., Talley, L., Thomas, L., Toole, J., and Weller, R.
- Published
- 2009
11. A secreted proteomic footprint for stem cell pluripotency
- Author
-
Brison Dr, Chris Denning, Hannah Smith, Christopher Smith, Silajzick E, Susan J. Kimber, David Knight, Bates N, and Phillip A. Lewis
- Subjects
Transcriptome ,Blot ,Cell culture ,Biology ,Stem cell ,Induced pluripotent stem cell ,Embryonic stem cell ,Cell biology - Abstract
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the spent medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient media for 48 hours to replicate an early, undirected dissolution of pluripotency.We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of 4 E8-against 4 E6-enriched biomarkers provides 16 ratio abundances which are each robustly diagnostic for pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to recovery assays.
- Published
- 2021
12. Characterisation of the mechanism by which a nonsense variant in RYR2 results in ventricular arrhythmia
- Author
-
Lior Gepstein, Benjamin Brown, Claire Hopton, Irit Huber, Anke J. Tijsen, Arbel G, Susan J. Kimber, William G. Newman, Luigi Venetucci, Amira Gepstein, Bates N, and L Maizels
- Subjects
medicine.medical_specialty ,business.industry ,Ryanodine receptor ,chemistry.chemical_element ,Calcium ,Catecholaminergic polymorphic ventricular tachycardia ,medicine.disease ,Ryanodine receptor 2 ,Nebivolol ,Endocrinology ,chemistry ,Internal medicine ,cardiovascular system ,medicine ,Missense mutation ,business ,Carvedilol ,Loss function ,medicine.drug - Abstract
BackgroundHeterozygous variants in the cardiac ryanodine receptor gene (RYR2) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Most pathogenic RYR2 variants are missense variants which result in a gain of function, causing ryanodine receptors to be increasingly sensitive to activation by calcium, have an increased open probability and an increased propensity to develop calcium waves. However, some RYR2 variants can lead to arrhythmias by a loss of function mechanism.ObjectiveTo understand the mechanism by which a novel nonsense variant in RYR2 p.(Arg4790Ter) leads to ventricular arrhythmias.MethodsHuman induced pluripotent stem cells (hiPSCs) harbouring the novel nonsense variant in RYR2 were differentiated into cardiomyocytes (RYR2-hiPSC-CMs) and molecular and calcium handling properties were studied.ResultsRYR2-hiPSC-CMs displayed significant calcium handling abnormalities at baseline and following treatment with isoproterenol. Treatment with carvedilol and nebivolol resulted in a significant reduction in calcium handling abnormalities in the RYR2-hiPSC-CMs. Expression of the mutant RYR2 allele was confirmed at the mRNA level and partial silencing of the mutant allele resulted in a reduction in calcium handling abnormalities at baseline.ConclusionThe nonsense variant behaves similarly to other gain of function variants in RYR2. Carvedilol and nebivolol may be suitable treatments for patients with gain of function RYR2 variants.
- Published
- 2021
13. Dissolved Organic Carbon as a Component of the Biological Pump in the North Atlantic Ocean [and Discussion]
- Author
-
Ducklow, H. W., Carlson, C. A., Bates, N. R., Knap, A. H., Michaels, A. F., Jickells, T., and McCave, I. N.
- Published
- 1995
14. Geochronology of volcanically associated hydrocarbon charge in the pre-salt carbonates of the Namibe Basin, Angola
- Author
-
Rochelle-Bates, N., Roberts, N.M.W., Sharp, I., Freitag, U., Verwer, K., Halton, A., Fiordalisi, E., van Dongen, B.E., Swart, R., Ferreira, C.H., Dixon, R., Schröder, S., Rochelle-Bates, N., Roberts, N.M.W., Sharp, I., Freitag, U., Verwer, K., Halton, A., Fiordalisi, E., van Dongen, B.E., Swart, R., Ferreira, C.H., Dixon, R., and Schröder, S.
- Abstract
In volcanic rifted margins, the timing of hydrocarbon charge is difficult to predict, but is important in understanding fluid genesis. We investigated whether igneous activity was linked to hydrocarbon charge in the prolific South Atlantic pre-salt petroleum system. To do this, we applied in situ carbonate U-Pb geochronology, a relatively novel tool for dating hydrocarbon migration, to bituminous veins in pre-salt travertines from the rifted onshore Namibe Basin (Angola). To test if fluid flow was synchronous with known volcanic pulses, we also obtained new 40Ar/39Ar geochronology from a nearby volcanic complex. Bitumen is associated with calcite in a first generation of veins and vugs, and with dolomite in younger veins. The dated calcite veins yielded a pooled U-Pb age of 86.2 ± 2.4 Ma, which overlaps the volcanism 40Ar/39Ar age of 89.9 ± 1.8 Ma. The overlapping dates and the localized bitumen occurrence around the dated volcanic center show a clear genetic relationship between Late Cretaceous igneous activity and hydrocarbon charge. The dolomite was dated at 56.8 ± 4.8 Ma, revealing a previously unknown Paleocene/Eocene fluid-flow phase in the basin.
- Published
- 2021
15. Global Carbon Budget 2020
- Author
-
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, Almuth, Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Van Der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.
- Subjects
Earth sciences ,ddc:550 - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO$_{2}$) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO$_{2}$ emissions (E$_{FOS}$) are based on energy statistics and cement production data, while emissions from land-use change (E$_{LUC}$), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO$_{2}$ concentration is measured directly and its growth rate (G$_{ATM}$) is computed from the annual changes in concentration. The ocean CO$_{2}$ sink (S$_{OCEAN}$) and terrestrial CO$_{2}$ sink (S$_{LAND}$) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B$_{IM}$), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), E$_{FOS}$ was 9.6 ± 0.5 GtC yr$^{-1}$ excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and E$_{LUC}$ was 1.6 ± 0.7 GtC yr$^{-1}$. For the same decade, G$_{ATM}$ was 5.1 ± 0.02 GtC yr$^{-1}$ (2.4 ± 0.01 ppm yr$_{-1}$), S$_{OCEAN}$ 2.5 ± 0.6 GtC yr$^{-1}$, and S$_{LAND}$ 3.4 ± 0.9 GtC yr$^{-1}$, with a budget imbalance B$_{IM}$ of −0.1 GtC yr$^{-1}$ indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in E$_{FOS}$ was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr$^{-1}$ excluding the cement carbonation sink (9.7 ± 0.5 GtC yr$^{-1}$ when cement carbonation sink is included), and E$_{LUC}$ was 1.8 ± 0.7 GtC yr$^{-1}$, for total anthropogenic CO$_{2}$ emissions of 11.5 ± 0.9 GtC yr$^{-1}$ (42.2 ± 3.3 GtCO$_{2}$). Also for 2019, G$_{ATM}$ was 5.4 ± 0.2 GtC yr$^{-1}$ (2.5 ± 0.1 ppm yr$^{-1}$), S$_{OCEAN}$ was 2.6 ± 0.6 GtC yr$^{-1}$, and S$_{LAND}$ was 3.1 ± 1.2 GtC yr$^{-1}$, with a B$_{IM}$ of 0.3 GtC. The global atmospheric CO$_{2}$ concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in E$_{FOS}$ relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr$^{-1}$ persist for the representation of semi-decadal variability in CO$_{2}$ fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO$_{2}$ flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
- Published
- 2020
16. Products from a surface ocean CO2 reference network, SOCONET
- Author
-
Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., Schuster, U., Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., and Schuster, U.
- Published
- 2020
17. Successful management of Heinz body hemolytic anemia associated with leek (Allium ampeloprasum) ingestion in a South American coati (Nasua nasua)
- Author
-
Jayson, S, Masters, N, Strike, T, Rendle, M, Peters, L M, and Bates, N
- Published
- 2019
18. Autonomous Wintertime Observations of Air‐Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO2 Uptake.
- Author
-
Nickford, S., Palter, J. B., Donohue, K., Fassbender, A. J., Gray, A. R., Long, J., Sutton, A. J., Bates, N. R., and Takeshita, Y.
- Subjects
GULF Stream ,OCEAN conditions (Weather) ,ATMOSPHERIC carbon dioxide ,WINTER ,ATMOSPHERIC boundary layer - Abstract
A scarcity of wintertime observations of surface ocean carbon dioxide partial pressure (pCO2) in and near the Gulf Stream creates uncertainty in the magnitude of the regional carbon sink and its controlling mechanisms. Recent observations from an Uncrewed Surface Vehicle (USV), outfitted with a payload to measure surface ocean and lower atmosphere pCO2, revealed sharp gradients in ocean pCO2 across the Gulf Stream. Surface ocean pCO2 was lower by ∼50 μatm relative to the atmosphere in the subtropical mode water (STMW) formation region. This undersaturation combined with strong wintertime winds allowed for rapid ocean uptake of CO2, averaging −11.5 mmol m−2 day−1 during the February 2019 USV mission. The unique timing of this mission revealed active STMW formation. The USV proved to be a useful tool for CO2 flux quantification in the poorly observed, dynamic western boundary current environment. Plain Language Summary: The North Atlantic Ocean absorbs more atmospheric carbon dioxide (CO2) than most regions of the global ocean. Using an ocean drone in the Gulf Stream region during the winter of 2019, we measured the air‐sea CO2 difference, calculated the air‐sea CO2 exchange, and compared our results to previous wintertime ship‐based measurements. We find that the region south of the Gulf Stream can absorb vast amounts of atmospheric CO2, owing both to surface ocean properties and the strong wintertime winds. Because of extremely sparse wintertime observations in this region, we hypothesize that ocean uptake of CO2 may be underestimated. Our work suggests that ocean drones can help close the observational gaps that create uncertainty in ocean carbon uptake in challenging regions and seasons, if these vehicles and the sensors they carry can be made robust to large breaking waves. Key Points: Surface waters in the subtropical mode water formation region are lower in pCO2 than in the atmosphere in winter by ∼50 μatmStrong wintertime winds drive atmospheric CO2 into the ocean near the Gulf Stream with high spatial and temporal variabilityUncrewed surface vehicles provide an opportunity to refine quantification and understanding of CO2 exchange near western boundary currents [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
19. Geochronology of volcanically associated hydrocarbon charge in the pre-salt carbonates of the Namibe Basin, Angola
- Author
-
Rochelle-Bates, N., primary, Roberts, N.M.W., additional, Sharp, I., additional, Freitag, U., additional, Verwer, K., additional, Halton, A., additional, Fiordalisi, E., additional, van Dongen, B.E., additional, Swart, R., additional, Ferreira, C.H., additional, Dixon, R., additional, and Schröder, S., additional
- Published
- 2020
- Full Text
- View/download PDF
20. A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements
- Author
-
Wanninkhof, R., Pickers, P., Omar, A., Sutton, A.J., Murata, A., Olsen, A., Stephens, B., Tilbrook, B., Munro, D., Pierrot, D., Rehder, G., Santana-Casiano, J.M., Müller, J.D., Trinanes, J.A., Tedesco, K.A., O'Brien, K.M., Currie, K., Barbero, L., Telszewski, M., Hoppema, Mario, Ishii, M., Gonzalez-Davila, M., Bates, N. R., Metzl, N., Suntharalingam, P., Feely, R.A., Nakaoka, S.-i., Lauvset, S., Takahashi, T., Steinhoff, T., Schuster, U., Wanninkhof, R., Pickers, P., Omar, A., Sutton, A.J., Murata, A., Olsen, A., Stephens, B., Tilbrook, B., Munro, D., Pierrot, D., Rehder, G., Santana-Casiano, J.M., Müller, J.D., Trinanes, J.A., Tedesco, K.A., O'Brien, K.M., Currie, K., Barbero, L., Telszewski, M., Hoppema, Mario, Ishii, M., Gonzalez-Davila, M., Bates, N. R., Metzl, N., Suntharalingam, P., Feely, R.A., Nakaoka, S.-i., Lauvset, S., Takahashi, T., Steinhoff, T., and Schuster, U.
- Published
- 2019
21. Phase I and pharmacokinetic study of the topoisomerase I inhibitor, exatecan mesylate (DX-8951f), using a weekly 30-minute intravenous infusion, in patients with advanced solid malignancies
- Author
-
Braybrooke, J. P., Boven, E., Bates, N. P., Ruijter, R., Dobbs, N., Cheverton, P. D., Pinedo, H. M., and Talbot, D. C.
- Published
- 2003
22. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks
- Author
-
Bates, N. R. and Mathis, J. T.
- Abstract
At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2) on the order of −66 to −199 Tg C year−1 (1012 g C), contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3) mineral saturation states (Ω) of seawater while seasonal phytoplankton primary production (PP) mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems
- Published
- 2018
23. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT
- Author
-
Saba, V, Friedrichs, M, Carr, M, Antoine, D, Armstrong, R, Asanuma, I, Aumont, O, Bates, N, Behrenfeld, M, Bennington, V, Bopp, L, Bruggeman, J, Buitenhuis, E, Church, M, Ciotti, A, Doney, S, Dowell, M, Dunne, J, Dutkiewicz, S, Gregg, W, Hoepffner, N, Hyde, K, Ishizaka, J, Kameda, T, and Karl, D
- Abstract
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ 14C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-a was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-a time series were available. © 2010 by the American Geophysical Union.
- Published
- 2016
24. THE OXFORD EXPERIENCE OF THYMOMA SURGERY IN PATIENTS WITH MG: 1998-2007
- Author
-
Viegas, S, Burke, G, Ratnatunga, C, Gleeson, F, Bates, N, Willcox, N, Vincent, A, Palace, J, Hilton-Jones, D, Newsom-Davis, J, and Buckley, C
- Published
- 2016
25. Air-sea CO2 fluxes on the Bering Sea shelf
- Author
-
Bates, N. R., Mathis, J. T., and Jeffries, M. A.
- Subjects
lcsh:Geology ,lcsh:QH501-531 ,lcsh:QH540-549.5 ,lcsh:QE1-996.5 ,lcsh:Life ,lcsh:Ecology - Abstract
There have been few previous studies of surface seawater CO2 partial pressure (pCO2) variability and air-sea CO2 gas exchange rates for the Bering Sea shelf. In 2008, spring and summertime observations were collected in the Bering Sea shelf as part of the Bering Sea Ecological Study (BEST). Our results indicate that the Bering Sea shelf was close to neutral in terms of CO2 sink-source status in springtime due to relatively small air-sea CO2 gradients (i.e., ΔpCO2 and sea-ice cover. However, by summertime, very low seawater pCO2 values were observed and much of the Bering Sea shelf became strongly undersaturated with respect to atmospheric CO2 concentrations. Thus the Bering Sea shelf transitions seasonally from mostly neutral conditions to a strong oceanic sink for atmospheric CO2 particularly in the "green belt" region of the Bering Sea where there are high rates of phytoplankton primary production (PP)and net community production (NCP). Ocean biological processes dominate the seasonal drawdown of seawater pCO2 for large areas of the Bering Sea shelf, with the effect partly countered by seasonal warming. In small areas of the Bering Sea shelf south of the Pribilof Islands and in the SE Bering Sea, seasonal warming is the dominant influence on seawater pCO2, shifting localized areas of the shelf from minor/neutral CO2 sink status to neutral/minor CO2 source status, in contrast to much of the Bering Sea shelf. Overall, we compute that the Bering Sea shelf CO2 sink in 2008 was 157 ± 35 Tg C yr−1 (Tg = 1012 g C) and thus a strong sink for CO2.
- Published
- 2011
26. An update to the surface ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, Dorothee, Pfeil, B., Smith, K, Hankin, S., Olsen, A, Alin, S. R., Cosca, C., Harasawa, S, Kozyr, A., Nojiri, Y., O'Brien, M, Schuster, Ute, Telszewski, Maciej, Tilbrook, B., Wada, C, Akl, J., Barbero, L, Bates, N., Boutin, J., Cai, W.-J., Castle, RD, Chavez, F. P., Chen, L, Chierici, M, Currie, K, de Baar, HJW, Evans, W., Feely, RA, Fransson, A, Gao, Z, Hales, B., Hardman-Mountford, N., Hoppema, M., Huang, W, Hunt, C. W., huss, b, Ichikawa, T, Johannessen, T., Jones, EM, Jones, S., Jutterstrom, Sara, Kitidis, V, Kortzinger, A, Lauvset, S. K., Lefevre, N, Manke, A., Mathis, T, Merlivat, L., Metzl, N., Murata, A., Newburger, T, Ono, T, Park, G.-H., Paterson, K., Pierrot, D., Rios, AF, Sabine, C. L., Saito, S, Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K, Sun, H, Sutton, AJ, Suzuki, T., Sweeney, C, Takahashi, T., Tjiputra, J., Tsurushima, N, van Heuven, S.M.A.C, Vandemark, D., Vlahos, P, Wallace, D, Wanninkhof, R, and Watson, A. J.
- Published
- 2013
27. The Engineering Model for the multi spectral imager of the EarthCARE spacecraft
- Author
-
Albiñana, A.P., Gelsthorpe, R., Lefebvre, A., Sauer, M., Kruse, K.-W., Münzenmayer, R., Baister, G., Chang, M., Everett, J., Barnes, A., Bates, N., Price, M., Skipper, M., Goeij, B.T.G. de, Meijer, E.A., Knaap, F.G.P. van der, and Hof, C.A. van 't
- Subjects
TS - Technical Sciences ,Physics & Electronics ,Space ,Information Society ,Electronics ,OPT - Optics SSE - Space Systems Engineering - Abstract
The Multi-Spectral Imager (MSI) will be flown on board the EarthCARE spacecraft, under development by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). The fundamental objective of the EarthCARE mission is improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. In addition to the MSI instrument, a Cloud Profiling Radar (CPR), an Atmospheric Lidar (ATLID), and a Broadband Radiometer (BBR) complete the payload of the EarthCARE satellite. By acquiring images of the clouds and aerosol distribution, the MSI instrument will provide important contextual information in support of the radar and lidar geophysical retrievals. The MSI development philosophy is based on the early development of an Engineering Confidence Model (ECM) and the subsequent development of a Proto-flight Model, the model to be launched on-board the EarthCARE satellite. This paper provides an overview of the MSI instrument and its development approach. A description of the ECM and its verification program is also provided. © 2012 SPIE.
- Published
- 2012
28. The HERE project toolkit: a resource for programme teams interested in improving student engagement and retention
- Author
-
Foster, E, Lawther, S, Keenan, C, Bates, N, Colley, B, Lefever, R, HASH(0x7cb42d0), HASH(0x7c9e2f0), and HASH(0x7d0dad8)
- Published
- 2012
29. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. -j., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-mountford, N. J., Hoppema, M., Huang, W. -j., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterstrom, S., Kitidis, V., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G. -h., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. -j., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-mountford, N. J., Hoppema, M., Huang, W. -j., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterstrom, S., Kitidis, V., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G. -h., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO(2) values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
- Published
- 2014
- Full Text
- View/download PDF
30. The Surface Ocean CO2 Atlas (SOCAT) enables detection of changes in the ocean carbon sink
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Published
- 2014
31. Sea-ice melt CO<sub>2</sub>–carbonate chemistry in the western Arctic Ocean: meltwater contributions to air–sea CO<sub>2</sub> gas exchange, mixed-layer properties and rates of net community production under sea ice
- Author
-
Bates, N. R., primary, Garley, R., additional, Frey, K. E., additional, Shake, K. L., additional, and Mathis, J. T., additional
- Published
- 2014
- Full Text
- View/download PDF
32. An update to the Surface Ocean CO<sub>2</sub> Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., primary, Pfeil, B., additional, Smith, K., additional, Hankin, S., additional, Olsen, A., additional, Alin, S. R., additional, Cosca, C., additional, Harasawa, S., additional, Kozyr, A., additional, Nojiri, Y., additional, O'Brien, K. M., additional, Schuster, U., additional, Telszewski, M., additional, Tilbrook, B., additional, Wada, C., additional, Akl, J., additional, Barbero, L., additional, Bates, N. R., additional, Boutin, J., additional, Bozec, Y., additional, Cai, W.-J., additional, Castle, R. D., additional, Chavez, F. P., additional, Chen, L., additional, Chierici, M., additional, Currie, K., additional, de Baar, H. J. W., additional, Evans, W., additional, Feely, R. A., additional, Fransson, A., additional, Gao, Z., additional, Hales, B., additional, Hardman-Mountford, N. J., additional, Hoppema, M., additional, Huang, W.-J., additional, Hunt, C. W., additional, Huss, B., additional, Ichikawa, T., additional, Johannessen, T., additional, Jones, E. M., additional, Jones, S. D., additional, Jutterström, S., additional, Kitidis, V., additional, Körtzinger, A., additional, Landschützer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Manke, A. B., additional, Mathis, J. T., additional, Merlivat, L., additional, Metzl, N., additional, Murata, A., additional, Newberger, T., additional, Omar, A. M., additional, Ono, T., additional, Park, G.-H., additional, Paterson, K., additional, Pierrot, D., additional, Ríos, A. F., additional, Sabine, C. L., additional, Saito, S., additional, Salisbury, J., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Sullivan, K. F., additional, Sun, H., additional, Sutton, A. J., additional, Suzuki, T., additional, Sweeney, C., additional, Takahashi, T., additional, Tjiputra, J., additional, Tsurushima, N., additional, van Heuven, S. M. A. C., additional, Vandemark, D., additional, Vlahos, P., additional, Wallace, D. W. R., additional, Wanninkhof, R., additional, and Watson, A. J., additional
- Published
- 2014
- Full Text
- View/download PDF
33. The Marine Carbon Cycle and Ocean Carbon Inventories
- Author
-
Siedler, Gerold, Griffies, S. M., Gould, J., Church, J. A., Tanhua, Toste, Bates, N., Körtzinger, Arne, Siedler, Gerold, Griffies, S. M., Gould, J., Church, J. A., Tanhua, Toste, Bates, N., and Körtzinger, Arne
- Published
- 2013
34. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
- Author
-
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. -j., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., Gonzalez-davila, M., Goyet, C., Hales, B., Hardman-mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G. -h., Paterson, K., Perez, Fiz F, Pierrot, D., Poisson, A., Rios, A. F., Santana-casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., Yoshikawa-inoue, H., Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W. -j., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., Gonzalez-davila, M., Goyet, C., Hales, B., Hardman-mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Koertzinger, A., Landschuetzer, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G. -h., Paterson, K., Perez, Fiz F, Pierrot, D., Poisson, A., Rios, A. F., Santana-casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-inoue, H.
- Abstract
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968-2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
- Published
- 2013
- Full Text
- View/download PDF
35. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009
- Author
-
Schuster, U., Mckinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., Gonzalez-davila, Melchor, Gruber, N., Jones, S., Krijnen, J., Landschuetzer, P., Lefevre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Roedenbeck, C., Santana-casiano, J. M., Takahashi, T., Wanninkhof, R., Watson, A. J., Schuster, U., Mckinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., Gonzalez-davila, Melchor, Gruber, N., Jones, S., Krijnen, J., Landschuetzer, P., Lefevre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Roedenbeck, C., Santana-casiano, J. M., Takahashi, T., Wanninkhof, R., and Watson, A. J.
- Abstract
The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO(2)-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO(2) observations based on two distinct methodologies. Our estimate of the contemporary sea-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40 degrees S and 79 degrees N is -0.49 +/- 0.05 Pg C yr(-1), and by the Arctic it is -0.12 +/- 0.06 Pg C yr(-1), leading to a combined sea-air flux of -0.61 +/- 0.06 Pg C yr(-1) for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.
- Published
- 2013
- Full Text
- View/download PDF
36. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
- Author
-
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N., Boutin, J., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, Elizabeth M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., Watson, A. J., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N., Boutin, J., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N., Hoppema, Mario, Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, Elizabeth M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschtzer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.
- Abstract
The Surface Ocean CO2 Atlas (SOCAT) is an effort by the international marine carbon research community. It aims to improve access to carbon dioxide measurements in the surface oceans by regular releases of quality controlled and fully documented synthesis and gridded fCO2 (fugacity of carbon dioxide) products. SOCAT version 2 presented here extends the data set for the global oceans and coastal seas by four years and has 10.1 million surface water fCO2 values from 2660 cruises between 1968 and 2011. The procedures for creating version 2 have been comparable to those for version 1. The SOCAT website (http://www.socat.info/) provides access to the individual cruise data files, as well as to the synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Scientific users can also retrieve the data as downloadable files or via Ocean Data View. Version 2 enables carbon specialists to expand their studies until 2011. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled-climate carbon models.
- Published
- 2013
37. The CLIMODE Field Campaign Observing the Cycle of Convection and Restratification over the Gulf Stream
- Author
-
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Marshall, John C., Maze, Guillaume O., Forget, Gael, Ferrari, Raffaele, Thomas, L., Talley, L., Silverthorne, K., Skyllingstad, E., Samelson, R., Lumpkin, R., Palter, J., Lozier, S., Kelly, K., Gregg, M., Edson, J., Weller, R., Toole, J., Straneo, F., Joyce, T., Fratantoni, D., Doney, Scott C., Dewar, W., Bates, N., Andersson, A., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Marshall, John C., Maze, Guillaume O., Forget, Gael, Ferrari, Raffaele, Thomas, L., Talley, L., Silverthorne, K., Skyllingstad, E., Samelson, R., Lumpkin, R., Palter, J., Lozier, S., Kelly, K., Gregg, M., Edson, J., Weller, R., Toole, J., Straneo, F., Joyce, T., Fratantoni, D., Doney, Scott C., Dewar, W., Bates, N., and Andersson, A.
- Abstract
A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results., National Science Foundation
- Published
- 2010
38. A global sea surface carbon observing system: inorganic and organic carbon dynamics in coastal oceans
- Author
-
Hall, J., Harrison, D.E., Stammer, D., Borges, A.V., Alin, S.R., Chavez, F.P., Vlahos, P., Johnson, K.S., Holt, J.T., Balch, W.M., Bates, N., Brainard, R., Cai, W-J., Chen, C.T.A., Currie, K., Dai, M., Degrandpre, M., Delille, B., Dickson, A., Evans, W., Feely, R.A., Friederich, G.E., Gong, G-C., Hales, B., Hardman-Mountford, N., Hendee, J., Hernandez-Ayon, J.M., Hood, M., Huertas, E., Hydes, D.J., Ianson, D., Krasakopoulou, E., Litt, E., Luchetta, A., Mathis, J., McGillis, W.R., Murata, A., Newton, J., Olafsson, J., Omar, A., Perez, F.F., Sabine, C., Salisbury, J.E., Salm, R., Sarma, V.V.S.S., Schneider, B., Sigler, M., Thomas, H., Turk, D., Vandermark, D., Wanninkhof, R., Ward, B., Hall, J., Harrison, D.E., Stammer, D., Borges, A.V., Alin, S.R., Chavez, F.P., Vlahos, P., Johnson, K.S., Holt, J.T., Balch, W.M., Bates, N., Brainard, R., Cai, W-J., Chen, C.T.A., Currie, K., Dai, M., Degrandpre, M., Delille, B., Dickson, A., Evans, W., Feely, R.A., Friederich, G.E., Gong, G-C., Hales, B., Hardman-Mountford, N., Hendee, J., Hernandez-Ayon, J.M., Hood, M., Huertas, E., Hydes, D.J., Ianson, D., Krasakopoulou, E., Litt, E., Luchetta, A., Mathis, J., McGillis, W.R., Murata, A., Newton, J., Olafsson, J., Omar, A., Perez, F.F., Sabine, C., Salisbury, J.E., Salm, R., Sarma, V.V.S.S., Schneider, B., Sigler, M., Thomas, H., Turk, D., Vandermark, D., Wanninkhof, R., and Ward, B.
- Published
- 2010
39. The challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT
- Author
-
Saba, V., Friedrichs, M., Carr, M., Antoine, David, Armstrong, R., Asanuma, I., Aumont, O., Bates, N., Behrenfeld, M., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E., Church, M., Ciotti, A., Doney, S., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K., Ishizaka, J., Kameda, T., Karl, D., Lima, I., Lomas, M., Marra, J., McKinley, G., Mélin, F., Moore, K., Morel, A., O’Reilly, J., Salihoglu, B., Scardi, M., Smyth, T., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T., Yool, A., Saba, V., Friedrichs, M., Carr, M., Antoine, David, Armstrong, R., Asanuma, I., Aumont, O., Bates, N., Behrenfeld, M., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E., Church, M., Ciotti, A., Doney, S., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K., Ishizaka, J., Kameda, T., Karl, D., Lima, I., Lomas, M., Marra, J., McKinley, G., Mélin, F., Moore, K., Morel, A., O’Reilly, J., Salihoglu, B., Scardi, M., Smyth, T., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T., and Yool, A.
- Abstract
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ 14C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT)over nearly two decades. Specifically, skill was assessed based on the models’ ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90%of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-a was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-a time series were available.
- Published
- 2010
40. Tracking the Variable North Atlantic Sink for Atmospheric CO2
- Author
-
Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M., Friedrich, Tobias, Hauck, J., Heinze, C., Johannessen, T., Körtzinger, Arne, Metzl, N., Olafsson, J., Olsen, A., Oschlies, Andreas, Padin, X.A., Pfeil, B., Santana-Casiano, J.M., Steinhoff, Tobias, Telszewski, M., Rios, A.F., Wallace, Douglas W.R., Wanninkhof, R., Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M., Friedrich, Tobias, Hauck, J., Heinze, C., Johannessen, T., Körtzinger, Arne, Metzl, N., Olafsson, J., Olsen, A., Oschlies, Andreas, Padin, X.A., Pfeil, B., Santana-Casiano, J.M., Steinhoff, Tobias, Telszewski, M., Rios, A.F., Wallace, Douglas W.R., and Wanninkhof, R.
- Abstract
The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.
- Published
- 2009
- Full Text
- View/download PDF
41. CARINA DATA SYNTHESIS PROJECT
- Author
-
Tanhua, T., Olsen, A., Hoppema, Mario, Jutterström, S., Schirnick, C., Van Heuven, S., Velo, A., Lin, X., Kozyr, A., Alvarez, M., Bakker, D. C. E., Brown, P., Falck, E., Jeansson, E., Lo Monaco, C., Olafsson, J., Perez, F. F., Pierrot, D., Rios, A. F., Sabine, C. L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L. G., Bates, N. R., Bellerby, R. G. J., Blindheim, J., Bullister, J. L., Gruber, N., Ishii, M., Johannessen, T., Jones, E. P., Köhler, Jens, Körtzinger, A., Metzl, N., Murata, A., Musielewicz, S., Omar, A. M., Olsson, K. A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof, R., Mintrop, L., Wallace, D. W. R., Key, R. M., Tanhua, T., Olsen, A., Hoppema, Mario, Jutterström, S., Schirnick, C., Van Heuven, S., Velo, A., Lin, X., Kozyr, A., Alvarez, M., Bakker, D. C. E., Brown, P., Falck, E., Jeansson, E., Lo Monaco, C., Olafsson, J., Perez, F. F., Pierrot, D., Rios, A. F., Sabine, C. L., Schuster, U., Steinfeldt, R., Stendardo, I., Anderson, L. G., Bates, N. R., Bellerby, R. G. J., Blindheim, J., Bullister, J. L., Gruber, N., Ishii, M., Johannessen, T., Jones, E. P., Köhler, Jens, Körtzinger, A., Metzl, N., Murata, A., Musielewicz, S., Omar, A. M., Olsson, K. A., de la Paz, M., Pfeil, B., Rey, F., Rhein, M., Skjelvan, I., Tilbrook, B., Wanninkhof, R., Mintrop, L., Wallace, D. W. R., and Key, R. M.
- Published
- 2009
42. Corrigendum to 'Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans' [Deep Sea Res. II 56 (2009) 554-577]
- Author
-
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., De Baar, H. J. W., Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and De Baar, H. J. W.
- Published
- 2009
43. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans
- Author
-
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., de Baar, H. J. W., Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.
- Published
- 2009
44. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification
- Author
-
Bates, N. R., primary, Orchowska, M. I., additional, Garley, R., additional, and Mathis, J. T., additional
- Published
- 2013
- Full Text
- View/download PDF
45. A uniform, quality controlled Surface Ocean CO<sub>2</sub> Atlas (SOCAT)
- Author
-
Pfeil, B., primary, Olsen, A., additional, Bakker, D. C. E., additional, Hankin, S., additional, Koyuk, H., additional, Kozyr, A., additional, Malczyk, J., additional, Manke, A., additional, Metzl, N., additional, Sabine, C. L., additional, Akl, J., additional, Alin, S. R., additional, Bates, N., additional, Bellerby, R. G. J., additional, Borges, A., additional, Boutin, J., additional, Brown, P. J., additional, Cai, W.-J., additional, Chavez, F. P., additional, Chen, A., additional, Cosca, C., additional, Fassbender, A. J., additional, Feely, R. A., additional, González-Dávila, M., additional, Goyet, C., additional, Hales, B., additional, Hardman-Mountford, N., additional, Heinze, C., additional, Hood, M., additional, Hoppema, M., additional, Hunt, C. W., additional, Hydes, D., additional, Ishii, M., additional, Johannessen, T., additional, Jones, S. D., additional, Key, R. M., additional, Körtzinger, A., additional, Landschützer, P., additional, Lauvset, S. K., additional, Lefèvre, N., additional, Lenton, A., additional, Lourantou, A., additional, Merlivat, L., additional, Midorikawa, T., additional, Mintrop, L., additional, Miyazaki, C., additional, Murata, A., additional, Nakadate, A., additional, Nakano, Y., additional, Nakaoka, S., additional, Nojiri, Y., additional, Omar, A. M., additional, Padin, X. A., additional, Park, G.-H., additional, Paterson, K., additional, Perez, F. F., additional, Pierrot, D., additional, Poisson, A., additional, Ríos, A. F., additional, Santana-Casiano, J. M., additional, Salisbury, J., additional, Sarma, V. V. S. S., additional, Schlitzer, R., additional, Schneider, B., additional, Schuster, U., additional, Sieger, R., additional, Skjelvan, I., additional, Steinhoff, T., additional, Suzuki, T., additional, Takahashi, T., additional, Tedesco, K., additional, Telszewski, M., additional, Thomas, H., additional, Tilbrook, B., additional, Tjiputra, J., additional, Vandemark, D., additional, Veness, T., additional, Wanninkhof, R., additional, Watson, A. J., additional, Weiss, R., additional, Wong, C. S., additional, and Yoshikawa-Inoue, H., additional
- Published
- 2013
- Full Text
- View/download PDF
46. An assessment of the Atlantic and Arctic sea–air CO<sub>2</sub> fluxes, 1990–2009
- Author
-
Schuster, U., primary, McKinley, G. A., additional, Bates, N., additional, Chevallier, F., additional, Doney, S. C., additional, Fay, A. R., additional, González-Dávila, M., additional, Gruber, N., additional, Jones, S., additional, Krijnen, J., additional, Landschützer, P., additional, Lefèvre, N., additional, Manizza, M., additional, Mathis, J., additional, Metzl, N., additional, Olsen, A., additional, Rios, A. F., additional, Rödenbeck, C., additional, Santana-Casiano, J. M., additional, Takahashi, T., additional, Wanninkhof, R., additional, and Watson, A. J., additional
- Published
- 2013
- Full Text
- View/download PDF
47. Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans
- Author
-
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H. J. W., Nojiri, Y., Wong, C. S., Delille, B., Bates, N. R., Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, Mario, Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H. J. W., Nojiri, Y., Wong, C. S., Delille, B., and Bates, N. R.
- Published
- 2007
48. A multi-tracer model approach to estimate reef water residence times
- Author
-
Venti, A., primary, Kadko, D., additional, Andersson, A. J., additional, Langdon, C., additional, and Bates, N. R., additional
- Published
- 2012
- Full Text
- View/download PDF
49. Abstract P5-16-04: A phase I study of a DNA plasmid based vaccine encoding the HER-2/neu intracellular domain in subjects with HER2+ breast cancer.
- Author
-
Salazar, LG, primary, Slota, M, additional, Higgens, D, additional, Coveler, A, additional, Dang, Y, additional, Childs, J, additional, Bates, N, additional, Guthrie, K, additional, Waisman, J, additional, and Disis, ML, additional
- Published
- 2012
- Full Text
- View/download PDF
50. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean
- Author
-
Bates, N. R., primary
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.