Die vorliegende Arbeit beschäftigt sich mit den molekularen Prozessen der Lipidanreicherung in der Gallenflüssigkeit. Leberzellen (Hepatozyten) sind polare Zellen, die für die Sekretion der Gallenflüssigkeit verantwortlich sind. Die Anbindung an den Blutkreislauf besteht über die basolaterale Membran. Durch die gegenüberliegende, sogenannte apikale Membran werden zwischen benachbarten Leberzellen tubuläre Stukturen (bile canaliculi, BC) gebildet, in die die Gallenflüssigkeit abgesondert wird. Daher wird diese Membran auch als Canalicularmembran (CM) bezeichnet. Die Gallenflüssigkeit besitzt hinsichtlich ihrer Lipidzusammensetzung eine bemerkenswerte Spezifität. Obwohl der Anteil von Phosphatidylcholin (PC) an den Phospholipiden der CM nur 35% beträgt, macht es 95% der Phospholipide der Gallenflüssigkeit aus. Mögliche Mechanismen, die zur Spezifität der Lipidsekretion in die Gallenflüssigkeit führen, werden untersucht und diskutiert. Phospholipide werden aus der äußeren Lamelle der CM durch Gallensalze herausgelöst. Die Wechselwirkung von Gallensalzen mit Phospholipiden ist kopfgruppenunspezifisch. Eine Solubilisierung von Phosphatidylserin (PS) und Phosphatidylethanolamin (PE) durch Gallensalze könnte durch die Wirkung einer Aminophospholipidtranslokase (APLT) verhindert werden, die diese Lipide aktiv auf die zytoplasmatische Seite der Membran pumpt. Zur Überprüfung dieser Hypothese wurden Versuche durchgeführt, um die Aktivität einer APLT in der CM nachzuweisen. Dabei wurde die Hepatomazelllinie HepG2 eingesetzt, die in der Lage ist, Canalicularvakuolen (BC) zu bilden. Zunächst wurde die Einwärtsbewegung einer Reihe fluoreszierender Lipidanaloga mit unterschiedlicher Affinität zur APLT charakterisiert. Dies geschah an der basolateralen Membran von HepG2 Zellen, wo eine APLT-Aktivität bereits bekannt ist. Die Aufnahme geeigneter APLT-Substrate konnte durch den APLT-Inhibitor Suramin reduziert werden. Ebenso wurde die Affinität eines Paares von PS-Analoga bestätigt, von denen Diether PS ein "schlechtes" und Diacyl PS ein "gutes" APLT-Substrat darstellt. Im zweiten Schritt wurde die Anreicherung der gleichen Analoga in BC von HepG2 Zellen untersucht. Es ergab sich eine auffallende Korrelation zwischen einer APLT vermittelten Aufnahme von Phospholipidanaloga an der basolateralen Membran und dem Fehlen dieser Analoga im Lumen der BC. Wenn Zellen mit Phospholipiden markiert wurden, die keine oder nur "schlechte" APLT-Substrate darstellen, erschienen die BC stark fluoreszierend. Diese Beobachtungen zeigen, dass eine APLT-Aktivität in der CM von Hepatozyten vorhanden ist, welche das Fehlen der Aminophospholipide in der Gallenflüssigkeit erklärt. Ein zweiter Schwerpunkt dieser Arbeit war die Untersuchung der Rolle von MDR-Proteinen (wie MDR3) bei der Lipidsekretion in die Gallenflüssigkeit. Aufgrund bisheriger Arbeiten wird vermutet, dass MDR3 daran als spezifischer Membrantransporter für PC beteiligt ist. In der vorliegenden Arbeit konnte jedoch gezeigt werden, dass verschiedene MDR-Inhibitoren die Anreicherung fluoreszierender Phospholipidanaloga in den BC von HepG2 Zellen nur wenig reduzieren. Diese Beobachtung kann unter der Annahme erklärt werden, dass MDR3 eher für die Exposition von PC an der lumenalen Seite der CM verantwortlich ist, als für den Tranport von PC über die Membran. Solche "Liftase"-Aktivität von MDR3 könnte endogenes PC der Detergenzwirkung von Gallensalzen zugänglich machen, ein Prozess, der für die hydrophileren fluoreszierenden PC-Analoga nicht nötig ist. Im dritten Teil wird die Rolle von Sphingolipiden und die Bildung von "Rafts" in der CM behandelt. Solche Membrandomänen sollten die Solubilisierung von Spingolipiden in die Gallenflüssigkeit verhindern. Eine Anreicherung fluoreszierender Sphingolipidanaloga in den BC wurde jedoch nachgewiesen, was darauf hindeutet, dass die verwendeten Analoga das Verhalten endogener Sphingolipide in der CM nicht korrekt wiederspiegeln. Im abschließenden Teil dieser Arbeit wurden die Grundlagen für eine Methode zur Aufklärung der physikochemischen Prozesse der Lipidsekretion an der Canalicularmembran gelegt. Die starke Umgebungsabhängigkeit der Fluoreszenzlebensdauer für verschiedene fluoreszierende Lipidanaloga wurde in einer Reihe von Modellumgebungen analysiert und deren Nutzbarkeit für die Vorhersage der Lipidorganisation geprüft. Insbesondere wurde die Wechselwirkung verschiedener Gallensalze mit Lipidanaloga und der Fluoreszenzresonanzenergietransfer zwischen verschiedenen Lipidanaloga charakterisiert. Diese Daten sind Ausgangsbasis für die mikroskopische Charakterisierung der Organisation von Lipidanaloga in den BC in vivo. This thesis addresses the molecular processes which are important in the formation of bile fluid. The polar liver cells (hepatocytes) secrete the bile fluid at their apical (canalicular) membrane into tubular bile canaliculi (BC) which are formed between adjacent cells. The basolateral membrane of hepatocytes faces the blood vessel. Bile fluid possesses a remarkable specificity regarding its lipid composition. Even though phosphatidylcholine (PC) contributes to only 35% of the phospholipids in the canalicular membrane, it constitutes 95% of biliary phospholipids. In this thesis possible mechanism that might lead to the specificity in biliary lipid secretion are analysed and discussed. Phospholipids are secreted from the outer leaflet of the canalicular membrane into bile by the effect of bile salts. The interaction of bile salts with phospholipids was shown to be independent of the phospholipid headgroup. Solubilisation of phosphatidylserine (PS) and phosphatidylethanolamine (PE) by bile salts could be prevented by the action of an aminophospholipid translocase (APLT) which actively pumps these lipids to the cytoplasmic leaflet of the membrane. Experiments to demonstrate a canalicular APLT activity were performed to proof this hypothesis. For this, the hepatoma cell line HepG2 which is able to polarise and to form a canalicular vacuole (BC) was utilised. A panel of fluorescent lipid analogues with different affinities to this transporter was used and first characterised at the basolateral membrane of HepG2 cells, where an APLT activity was already demonstrated. The rapid APLT mediated uptake of aminophospholipid analogues representing appropriate substrates of APLT was reduced by applying the inhibitor suramin. The affinity of a pair of PS analogues with diether NBD-PS as a poor APLT substrate and diacyl NBD-PS representing a suitable substrate was confirmed. In a next step the enrichment of the same phospholipid analogues in the BC was investigated. There was a striking correlation between APLT mediated uptake of phospholipid analogues at the basolateral membrane and absence of these analogues from the BC. In the case of phospholipid analogues that were no or poor substrates of APLT the BC appeared highly fluorescent, indicating that indeed a canalicular APLT is responsible and sufficient for biliary absence of aminophospholipids. Further experiments were aimed on the investigation of the role of MDR proteins (as MDR3) in biliary lipid secretion. It has been proposed that MDR3, which is crucial for biliary phospholipid secretion, acts as a specific flippase for PC. However, different MDR inhibitors did not completely abolish the enrichment of fluorescent phospholipid analogues in the BC in this study. This observation can be explained assuming that MDR3 is responsible for the exposure of PC at the lumenal side of the canalicular membrane rather than for its transport across the membrane. Such a "liftase" activity of MDR could make endogenous PC accessible to the detergent bile salts which is not necessary for its more hydrophilic fluorescent analogues. The third part of this thesis addressed the role of sphingolipids and the formation of detergent resistant rafts in the canalicular membrane. Rafts are thought to prevent sphingolipid solubilisation into bile. Fluorescent sphingolipid analogues were found to enrich in the BC even at low temperatures, however. These experiments suggest that the applied analogues might not suitably represent the majority of sphingolipids in the canalicular membrane. The final part of this study provides the basis for a method to investigate the physico-chemical processes occurring during lipid secretion at the canalicular membrane. The sensitivity of fluorescence life times on environmental changes was analysed using fluorescent lipid analogues in a set of model environments and its utility for predicting biliary lipid organisation is discussed. Especially the interaction of different bile salts with lipid analogues and fluorescence energy transfer between distinct lipid analogues was characterised. These data can be utilised for characterisation of the organisation of biliary enriched lipid analogues in vivo at a microscopic level in future.