1. Evaluating Cosmological Biases using Photometric Redshifts for Type Ia Supernova Cosmology with the Dark Energy Survey Supernova Program
- Author
-
Chen, R., Scolnic, D., Vincenzi, M., Rykoff, E. S., Myles, J., Kessler, R., Popovic, B., Sako, M., Smith, M., Armstrong, P., Brout, D., Davis, T. M., Galbany, L., Lee, J., Lidman, C., Möller, A., Sánchez, B. O., Sullivan, M., Qu, H., Wiseman, P., Abbott, T. M. C., Aguena, M., Allam, S., Alves, O., Andrade-Oliveira, F., Annis, J., Bacon, D., Brooks, D., Rosell, A. Carnero, Carretero, J., Choi, A., Conselice, C., da Costa, L. N., Pereira, M. E. S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Roodman, A., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, D. L., Vikram, V., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance-redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light-curve in combination with Gaussian and full p(z) priors from host-galaxy photo-z estimates. Using the DES 5-year photometrically-classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3x2 point analyses. With detailed catalog-level simulations of the DES 5-year sample, we find that the simulated w can be recovered within $\pm$0.02 when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within ~1$\sigma$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses., Comment: 19 pages, 9 figures. Submitting to MNRAS, comments welcome
- Published
- 2024