63,909 results on '"Popa A"'
Search Results
2. A multidisciplinary investigation of the Konopi mansion in Odvos, Romania
- Author
-
Popa Anca, Anghel Andreea, Onescu Iasmina, and Mosoarca Marius
- Subjects
Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Architectural heritage represents one of the most important assets of a local community, as it embodies their authenticity and spirit of place. This paper takes a look at the nobiliary manor houses in the extra-urban area of the county Arad, which is located in the western part of Romania, close to the border with Hungary. Along the Mures River, there are many manor houses and the interest and curiosity for this type of former residences of the nobility in Romania has increased in the last few years, whether we are talking about entrepreneurs who want to restore them to their former glory or passers-by curious to discover hidden treasures in rural areas. This architecture, that of the extra-urban noble residences, is a particular feature of the Modernity, very valuable in terms of cultural heritage because it was the result of a culture of the European area. It can be said that the noble architecture of the region Banat-Crișana is a result of the regional interpenetration of Central European canons. Early modern noble residences –known by their classical architecture – are characteristic of rural landscape of the Mures Valley, with more than ten such mansions and buildings of high historical value. Of these, the Konopi mansion, whose architecture makes its presence felt in the consciousness of the community, as it marks the silhouette of the Mures valley. The aim of this paper is to study the manor house and the ensemble Konopi and the way in which the residences were thought of and perceived at the time, both from the point of view of their function as a dwelling and as a symbol of the family power in the countryside. The overall objective of this paper is to identify the ways to intervene on the Konopi Castle complex and to generate a strategy for its long-lasting functioning so that the historical monument of regional and local interest can be left for future generations.
- Published
- 2024
- Full Text
- View/download PDF
3. Euclid preparation. The impact of relativistic redshift-space distortions on two-point clustering statistics from the Euclid wide spectroscopic survey
- Author
-
Euclid Collaboration, Elkhashab, M. Y., Bertacca, D., Porciani, C., Salvalaggio, J., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, R., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Schirmer, M., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Finelli, F., Gracia-Carpio, J., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Cooray, A. R., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Lacasa, F., Graet, J. Le, Legrand, L., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Sikkema, G., Silvestri, A., Simon, P., Mancini, A. Spurio, Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Vernizzi, F., Verza, G., Vielzeuf, P., and Hernández-Monteagudo, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Measurements of galaxy clustering are affected by RSD. Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determine which of these effects leave a detectable imprint on several 2-point clustering statistics extracted from the EWSS on large scales. We generate 140 mock galaxy catalogues with the survey geometry and selection function of the EWSS and make use of the LIGER method to account for a variable number of relativistic RSD to linear order in the cosmological perturbations. We estimate different 2-point clustering statistics from the mocks and use the likelihood-ratio test to calculate the statistical significance with which the EWSS could reject the null hypothesis that certain relativistic projection effects can be neglected in the theoretical models. We find that the combined effects of lensing magnification and convergence imprint characteristic signatures on several clustering observables. Their S/N ranges between 2.5 and 6 (depending on the adopted summary statistic) for the highest-redshift galaxies in the EWSS. The corresponding feature due to the peculiar velocity of the Sun is measured with a S/N of order one or two. The $P_{\ell}(k)$ from the catalogues that include all relativistic effects reject the null hypothesis that RSD are only generated by the variation of the peculiar velocity along the line of sight with a significance of 2.9 standard deviations. As a byproduct of our study, we demonstrate that the mixing-matrix formalism to model finite-volume effects in the $P_{\ell}(k)$ can be robustly applied to surveys made of several disconnected patches. Our results indicate that relativistic RSD, the contribution from weak gravitational lensing in particular, cannot be disregarded when modelling 2-point clustering statistics extracted from the EWSS., Comment: 23 pages, 14 figures
- Published
- 2024
4. Euclid preparation: 6x2 pt analysis of Euclid's spectroscopic and photometric data sets
- Author
-
Euclid Collaboration, Paganin, L., Bonici, M., Carbone, C., Camera, S., Tutusaus, I., Davini, S., Bel, J., Tosi, S., Sciotti, D., Di Domizio, S., Risso, I., Testera, G., Sapone, D., Sakr, Z., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Bernardeau, F., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Courbin, F., Courtois, H. M., Crocce, M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Fabbian, G., Farinelli, R., Graciá-Carpio, J., Mauri, N., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Blanchard, A., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Cañas-Herrera, G., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Desprez, G., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Escoffier, S., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hildebrandt, H., Hjorth, J., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Patrizii, L., Pezzotta, A., Popa, V., Porciani, C., Potter, D., Pöntinen, M., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Tao, C., Tessore, N., Teyssier, R., Toft, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological parameter forecasts for the Euclid 6x2pt statistics, which include the galaxy clustering and weak lensing main probes together with previously neglected cross-covariance and cross-correlation signals between imaging/photometric and spectroscopic data. The aim is understanding the impact of such terms on the Euclid performance. We produce 6x2pt cosmological forecasts, considering two different techniques: the so-called harmonic and hybrid approaches, respectively. In the first, we treat all the different Euclid probes in the same way, i.e. we consider only angular 2pt-statistics for spectroscopic and photometric clustering, as well as for weak lensing, analysing all their possible cross-covariances and cross-correlations in the spherical harmonic domain. In the second, we do not account for negligible cross-covariances between the 3D and 2D data, but consider the combination of their cross-correlation with the auto-correlation signals. We find that both cross-covariances and cross-correlation signals, have a negligible impact on the cosmological parameter constraints and, therefore, on the Euclid performance. In the case of the hybrid approach, we attribute this result to the effect of the cross-correlation between weak lensing and photometric data, which is dominant with respect to other cross-correlation signals. In the case of the 2D harmonic approach, we attribute this result to two main theoretical limitations of the 2D projected statistics implemented in this work according to the analysis of official Euclid forecasts: the high shot noise and the limited redshift range of the spectroscopic sample, together with the loss of radial information from subleading terms such as redshift-space distortions and lensing magnification. Our analysis suggests that 2D and 3D Euclid data can be safely treated as independent, with a great saving in computational resources., Comment: 32 pages, 20 figures. Comments are welcome
- Published
- 2024
5. Euclid preparation. Deep learning true galaxy morphologies for weak lensing shear bias calibration
- Author
-
Euclid Collaboration, Csizi, B., Schrabback, T., Grandis, S., Hoekstra, H., Jansen, H., Linke, L., Congedo, G., Taylor, A. N., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Simon, P., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
To date, galaxy image simulations for weak lensing surveys usually approximate the light profiles of all galaxies as a single or double S\'ersic profile, neglecting the influence of galaxy substructures and morphologies deviating from such a simplified parametric characterization. While this approximation may be sufficient for previous data sets, the stringent cosmic shear calibration requirements and the high quality of the data in the upcoming Euclid survey demand a consideration of the effects that realistic galaxy substructures have on shear measurement biases. Here we present a novel deep learning-based method to create such simulated galaxies directly from HST data. We first build and validate a convolutional neural network based on the wavelet scattering transform to learn noise-free representations independent of the point-spread function of HST galaxy images that can be injected into simulations of images from Euclid's optical instrument VIS without introducing noise correlations during PSF convolution or shearing. Then, we demonstrate the generation of new galaxy images by sampling from the model randomly and conditionally. Next, we quantify the cosmic shear bias from complex galaxy shapes in Euclid-like simulations by comparing the shear measurement biases between a sample of model objects and their best-fit double-S\'ersic counterparts. Using the KSB shape measurement algorithm, we find a multiplicative bias difference between these branches with realistic morphologies and parametric profiles on the order of $6.9\times 10^{-3}$ for a realistic magnitude-S\'ersic index distribution. Moreover, we find clear detection bias differences between full image scenes simulated with parametric and realistic galaxies, leading to a bias difference of $4.0\times 10^{-3}$ independent of the shape measurement method. This makes it relevant for stage IV weak lensing surveys such as Euclid., Comment: Submitted to A&A. 29 pages, 20 figures, 2 tables
- Published
- 2024
6. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 4. Constraints on $f(R)$ models from the photometric primary probes
- Author
-
Euclid Collaboration, Koyama, K., Pamuk, S., Casas, S., Bose, B., Carrilho, P., Sáez-Casares, I., Atayde, L., Cataneo, M., Fiorini, B., Giocoli, C., Brun, A. M. C. Le, Pace, F., Pourtsidou, A., Rasera, Y., Sakr, Z., Winther, H. -A., Altamura, E., Adamek, J., Baldi, M., Breton, M. -A., Rácz, G., Vernizzi, F., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Bardelli, S., Bernardeau, F., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Hailey, M., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Farinelli, R., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Bertacca, D., Blanchard, A., Blot, L., Böhringer, H., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ezziati, M., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Liu, S. J., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Murray, C., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the constraint on $f(R)$ gravity that can be obtained by photometric primary probes of the Euclid mission. Our focus is the dependence of the constraint on the theoretical modelling of the nonlinear matter power spectrum. In the Hu-Sawicki $f(R)$ gravity model, we consider four different predictions for the ratio between the power spectrum in $f(R)$ and that in $\Lambda$CDM: a fitting formula, the halo model reaction approach, ReACT and two emulators based on dark matter only $N$-body simulations, FORGE and e-Mantis. These predictions are added to the MontePython implementation to predict the angular power spectra for weak lensing (WL), photometric galaxy clustering and their cross-correlation. By running Markov Chain Monte Carlo, we compare constraints on parameters and investigate the bias of the recovered $f(R)$ parameter if the data are created by a different model. For the pessimistic setting of WL, one dimensional bias for the $f(R)$ parameter, $\log_{10}|f_{R0}|$, is found to be $0.5 \sigma$ when FORGE is used to create the synthetic data with $\log_{10}|f_{R0}| =-5.301$ and fitted by e-Mantis. The impact of baryonic physics on WL is studied by using a baryonification emulator BCemu. For the optimistic setting, the $f(R)$ parameter and two main baryon parameters are well constrained despite the degeneracies among these parameters. However, the difference in the nonlinear dark matter prediction can be compensated by the adjustment of baryon parameters, and the one-dimensional marginalised constraint on $\log_{10}|f_{R0}|$ is biased. This bias can be avoided in the pessimistic setting at the expense of weaker constraints. For the pessimistic setting, using the $\Lambda$CDM synthetic data for WL, we obtain the prior-independent upper limit of $\log_{10}|f_{R0}|< -5.6$. Finally, we implement a method to include theoretical errors to avoid the bias., Comment: 24 pages, 16 figures, submitted on behalf of the Euclid Collaboration
- Published
- 2024
7. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 2. Results from non-standard simulations
- Author
-
Euclid Collaboration, Rácz, G., Breton, M. -A., Fiorini, B., Brun, A. M. C. Le, Winther, H. -A., Sakr, Z., Pizzuti, L., Ragagnin, A., Gayoux, T., Altamura, E., Carella, E., Pardede, K., Verza, G., Koyama, K., Baldi, M., Pourtsidou, A., Vernizzi, F., Adame, A. G., Adamek, J., Avila, S., Carbone, C., Despali, G., Giocoli, C., Hernández-Aguayo, C., Hassani, F., Kunz, M., Li, B., Rasera, Y., Yepes, G., Gonzalez-Perez, V., Corasaniti, P. -S., García-Bellido, J., Hamaus, N., Kiessling, A., Marinucci, M., Moretti, C., Mota, D. F., Piga, L., Pisani, A., Szapudi, I., Tallada-Crespí, P., Aghanim, N., Andreon, S., Baccigalupi, C., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Bertacca, D., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Lacasa, F., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard $\Lambda$-cold-dark-matter ($\Lambda$CDM) paradigm and in many non-standard models beyond $\Lambda$CDM. We present the scientific results from a suite of cosmological N-body simulations using non-standard models including dynamical dark energy, k-essence, interacting dark energy, modified gravity, massive neutrinos, and primordial non-Gaussianities. We investigate how these models affect the large-scale-structure formation and evolution in addition to providing synthetic observables that can be used to test and constrain these models with Euclid data. We developed a custom pipeline based on the Rockstar halo finder and the nbodykit large-scale structure toolkit to analyse the particle output of non-standard simulations and generate mock observables such as halo and void catalogues, mass density fields, and power spectra in a consistent way. We compare these observables with those from the standard $\Lambda$CDM model and quantify the deviations. We find that non-standard cosmological models can leave significant imprints on the synthetic observables that we have generated. Our results demonstrate that non-standard cosmological N-body simulations provide valuable insights into the physics of dark energy and dark matter, which is essential to maximising the scientific return of Euclid., Comment: 22 pages, 7 figures
- Published
- 2024
8. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 1. Numerical methods and validation
- Author
-
Euclid Collaboration, Adamek, J., Fiorini, B., Baldi, M., Brando, G., Breton, M. -A., Hassani, F., Koyama, K., Brun, A. M. C. Le, Rácz, G., Winther, H. -A., Casalino, A., Hernández-Aguayo, C., Li, B., Potter, D., Altamura, E., Carbone, C., Giocoli, C., Mota, D. F., Pourtsidou, A., Sakr, Z., Vernizzi, F., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Bardelli, S., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Kruk, S., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Migliaccio, M., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Patrizii, L., Popa, V., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Vielzeuf, P., and Walton, N. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
To constrain models beyond $\Lambda$CDM, the development of the Euclid analysis pipeline requires simulations that capture the nonlinear phenomenology of such models. We present an overview of numerical methods and $N$-body simulation codes developed to study the nonlinear regime of structure formation in alternative dark energy and modified gravity theories. We review a variety of numerical techniques and approximations employed in cosmological $N$-body simulations to model the complex phenomenology of scenarios beyond $\Lambda$CDM. This includes discussions on solving nonlinear field equations, accounting for fifth forces, and implementing screening mechanisms. Furthermore, we conduct a code comparison exercise to assess the reliability and convergence of different simulation codes across a range of models. Our analysis demonstrates a high degree of agreement among the outputs of different simulation codes, providing confidence in current numerical methods for modelling cosmic structure formation beyond $\Lambda$CDM. We highlight recent advances made in simulating the nonlinear scales of structure formation, which are essential for leveraging the full scientific potential of the forthcoming observational data from the Euclid mission., Comment: 20 pages, 7 figures, 1 appendix; submitted on behalf of the Euclid Collaboration
- Published
- 2024
9. Euclid preparation: Determining the weak lensing mass accuracy and precision for galaxy clusters
- Author
-
Euclid Collaboration, Ingoglia, L., Sereno, M., Farrens, S., Giocoli, C., Baumont, L., Lesci, G. F., Moscardini, L., Murray, C., Vannier, M., Biviano, A., Carbone, C., Covone, G., Despali, G., Maturi, M., Maurogordato, S., Meneghetti, M., Radovich, M., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bellagamba, F., Bender, R., Bernardeau, F., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Faustini, F., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Munari, E., Niemi, S. -M., Padilla, C., Paech, K., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Finelli, F., Gracia-Carpio, J., Matthew, S., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Costanzi, M., Cucciati, O., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ezziati, M., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Schultheis, M., Simon, P., Mancini, A. Spurio, Stadel, J., Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the level of accuracy and precision of cluster weak-lensing (WL) masses measured with the \Euclid data processing pipeline. We use the DEMNUni-Cov $N$-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider different halo mass density models, priors, and mass point estimates. WL mass differs from true mass due to, e.g., the intrinsic ellipticity of sources, correlated or uncorrelated matter and large-scale structure, halo triaxiality and orientation, and merging or irregular morphology. In an ideal scenario without observational or measurement errors, the maximum likelihood estimator is the most accurate, with WL masses biased low by $\langle b_M \rangle = -14.6 \pm 1.7 \, \%$ on average over the full range $M_\text{200c} > 5 \times 10^{13} \, M_\odot$ and $z < 1$. Due to the stabilising effect of the prior, the biweight, mean, and median estimates are more precise. The scatter decreases with increasing mass and informative priors significantly reduce the scatter. Halo mass density profiles with a truncation provide better fits to the lensing signal, while the accuracy and precision are not significantly affected. We further investigate the impact of additional sources of systematic uncertainty on the WL mass, namely the impact of photometric redshift uncertainties and source selection, the expected performance of \Euclid cluster detection algorithms, and the presence of masks. Taken in isolation, we find that the largest effect is induced by non-conservative source selection. This effect can be mostly removed with a robust selection. As a final \Euclid-like test, we combine systematic effects in a realistic observational setting and find results similar to the ideal case, $\langle b_M \rangle = - 15.5 \pm 2.4 \, \%$, under a robust selection.
- Published
- 2024
10. Euclid preparation. L. Calibration of the linear halo bias in $\Lambda(\nu)$CDM cosmologies
- Author
-
Euclid Collaboration, Castro, T., Fumagalli, A., Angulo, R. E., Bocquet, S., Borgani, S., Costanzi, M., Dakin, J., Dolag, K., Monaco, P., Saro, A., Sefusatti, E., Aghanim, N., Amendola, L., Andreon, S., Baccigalupi, C., Baldi, M., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Costille, A., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Douspis, M., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Böhringer, H., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Chambers, K. C., Cooray, A. R., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission, designed to map the geometry of the dark Universe, presents an unprecedented opportunity for advancing our understanding of the cosmos through its photometric galaxy cluster survey. This paper focuses on enhancing the precision of halo bias (HB) predictions, which is crucial for deriving cosmological constraints from the clustering of galaxy clusters. Our study is based on the peak-background split (PBS) model linked to the halo mass function (HMF); it extends with a parametric correction to precisely align with results from an extended set of $N$-body simulations carried out with the OpenGADGET3 code. Employing simulations with fixed and paired initial conditions, we meticulously analyze the matter-halo cross-spectrum and model its covariance using a large number of mock catalogs generated with Lagrangian Perturbation Theory simulations with the PINOCCHIO code. This ensures a comprehensive understanding of the uncertainties in our HB calibration. Our findings indicate that the calibrated HB model is remarkably resilient against changes in cosmological parameters including those involving massive neutrinos. The robustness and adaptability of our calibrated HB model provide an important contribution to the cosmological exploitation of the cluster surveys to be provided by the Euclid mission. This study highlights the necessity of continuously refining the calibration of cosmological tools like the HB to match the advancing quality of observational data. As we project the impact of our model on cosmological constraints, we find that, given the sensitivity of the Euclid survey, a miscalibration of the HB could introduce biases in cluster cosmology analyses. Our work fills this critical gap, ensuring the HB calibration matches the expected precision of the Euclid survey. The implementation of our model is publicly available in https://github.com/TiagoBsCastro/CCToolkit., Comment: 20 pages; 12 figures; accepted for publication in A&A; abstract abridged for arXiv submission
- Published
- 2024
- Full Text
- View/download PDF
11. Invasive alien plant species in Romania of European Union concern
- Author
-
Sîrbu Culiţă, Anastasiu Paulina, Urziceanu Mihaela, Camen-Comănescu Petronela, Sîrbu Ioana-Minodora, Popa Ana-Maria, Ioja Cristian, Gavrilidis Alexandru-Athanasios, and Oprea Adrian
- Subjects
non-native plant species ,distribution ,pathways ,romanian flora ,Environmental sciences ,GE1-350 - Abstract
An assessement of the alien plants of Romania was conducted which considered the requirements of Regulation 1143/2014 of the European Union (EU). Thus, available data about the presence, invasiveness, distribution, pathways of introduction and their known impact in the territory of Romania were analysed. We found that of 36 plant species of EU concern, four are already established in Romania and widespread, at least locally or regionally: Ailanthus altissima, Asclepias syriaca, Elodea nuttallii and Impatiens glandulifera. For Humulus scandens there are some reports, but its presence and status require confirmation. Heracleum sosnowskyi and Ludwigia peploides are confirmed for only one location for each species. The presence of Cabomba caroliniana and Myriophyllum aquaticum in Romania is not confirmed. Most of the records are intentional introductions for ornamental purposes. Regarding their invasiveness, given the geographical origin and history of invasion in warmer climate regions (e.g., tropical, subtropical), many of the species listed as being of EU concern do not currently constitute a real threat to Romania, for the time being, but may do in a climate change scenario for the 2070s. Data about the impact of alien plant species and their management in Romania are scattered or completely missing. Coordinated institutional efforts are needed to increase the efficiency of the management of alien species at national and local level. These efforts should include: enhancing the legislation and the capacity of public institutions to manage invasive species, increasing the research interest in the science of this topic and promoting real measures to mitigate, control and remove alien plants.
- Published
- 2021
- Full Text
- View/download PDF
12. The Future as a Scenario of Hospitality in Ali Smith’s There But For The
- Author
-
POPA ANDREI BOGDAN
- Subjects
futurity ,conditional hospitality ,unexpected event ,choratic space ,contingency ,thematization ,singularity ,History (General) and history of Europe ,English literature ,PR1-9680 - Abstract
The purpose of this essay is to demonstrate how Ali Smith’s novel There But For The (2011) foregrounds a temporality in which the scenario of hospitality is encoded into the characters’ perception of the future, while the welcoming scenarios in which they engage are themselves marked by the awareness of futurity. To this end, I rework Levinas’s equation of the future as the Other, as well as Derrida’s notions of conditional and unconditional hospitality, of the future as the expected/unexpected event, and of “choratic space.” The subsequent analysis of the novel proves how these notions are thematized both through the characters’ inner and intersubjective discourse, and via the authorial construction of imagery and the deictics of the spaces they inhabit. As such, the characters’ conversations bear the marks of an uncertain causality springing from the welcoming scenario; attitudes towards futurity are faced with the disquieting awareness of the conflict between the expected and the unexpected event; while the choratic space acts as the possibility of an ethical reaction to the strangers’ singularity, through a linguistic reorientation which employs the contingency of the linguistic sign as a site for hospitality.
- Published
- 2021
- Full Text
- View/download PDF
13. DELIFT: Data Efficient Language model Instruction Fine Tuning
- Author
-
Agarwal, Ishika, Killamsetty, Krishna, Popa, Lucian, and Danilevksy, Marina
- Subjects
Computer Science - Computation and Language - Abstract
Fine-tuning large language models (LLMs) is essential for enhancing their performance on specific tasks but is often resource-intensive due to redundant or uninformative data. To address this inefficiency, we introduce DELIFT (Data Efficient Language model Instruction Fine-Tuning), a novel algorithm that systematically optimizes data selection across the three key stages of fine-tuning: (1) instruction tuning, (2) task-specific fine-tuning (e.g., reasoning, question-answering), and (3) continual fine-tuning (e.g., incorporating new data versions). Unlike existing methods that focus on single-stage optimization or rely on computationally intensive gradient calculations, DELIFT operates efficiently across all stages. Central to our approach is a pairwise utility metric that quantifies how beneficial a data sample is for improving the model's responses to other samples, effectively measuring the informational value relative to the model's current capabilities. By leveraging different submodular functions applied to this metric, DELIFT selects diverse and optimal subsets that are useful across all stages of fine-tuning. Experiments across various tasks and model scales demonstrate that DELIFT can reduce the fine-tuning data size by up to 70% without compromising performance, offering significant computational savings and outperforming existing methods in both efficiency and efficacy.
- Published
- 2024
14. Euclid: High-precision imaging astrometry and photometry from Early Release Observations. I. Internal kinematics of NGC 6397 by combining Euclid and Gaia data
- Author
-
Libralato, M., Bedin, L. R., Griggio, M., Massari, D., Anderson, J., Cuillandre, J. -C., Ferguson, A. M. N., Lançon, A., Larsen, S. S., Schirmer, M., Annibali, F., Balbinot, E., Dalessandro, E., Erkal, D., Kuzma, P. B., Saifollahi, T., Kleijn, G. Verdoes, Kümmel, M., Nakajima, R., Correnti, M., Battaglia, G., Altieri, B., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Refregier, A., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Sauvage, M., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tsyganov, A., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Scottez, V., Scott, D., and Smart, R. L.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The instruments at the focus of the Euclid space observatory offer superb, diffraction-limited imaging over an unprecedented (from space) wide field of view of 0.57 deg$^2$. This exquisite image quality has the potential to produce high-precision astrometry for point sources once the undersampling of Euclid's cameras is taken into account by means of accurate, effective point spread function (ePSF) modelling. We present a complex, detailed workflow to simultaneously solve for the geometric distortion (GD) and model the undersampled ePSFs of the Euclid detectors. Our procedure was successfully developed and tested with data from the Early Release Observations (ERO) programme focused on the nearby globular cluster NGC 6397. Our final one-dimensional astrometric precision for a well-measured star just below saturation is 0.7 mas (0.007 pixel) for the Visible Instrument (VIS) and 3 mas (0.01 pixel) for the Near-Infrared Spectrometer and Photometer (NISP). Finally, we present a specific scientific application of this high-precision astrometry: the combination of Euclid and Gaia data to compute proper motions and study the internal kinematics of NGC 6397. Future work, when more data become available, will allow for a better characterisation of the ePSFs and GD corrections that are derived here, along with assessment of their temporal stability, and their dependencies on the spectral energy distribution of the sources as seen through the wide-band filters of Euclid., Comment: 23 pages, 21 figures. Accepted for publication in A&A on October 24, 2024. Astro-photometric catalogs and stacked images will be available at the CDS after the paper will be published
- Published
- 2024
15. Euclid: The $r_{\rm b}$-$M_\ast$ relation as a function of redshift. I. The $5 \times 10^9 M_\odot$ black hole in NGC 1272
- Author
-
Saglia, R., Mehrgan, K., de Nicola, S., Thomas, J., Kluge, M., Bender, R., Delley, D., Erwin, P., Fabricius, M., Neureiter, B., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Degaudenzi, H., De Lucia, G., Dinis, J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fourmanoit, N., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., George, K., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Scottez, V., Ferrarese, L., Lusso, E., and Scott, D.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Core ellipticals, massive early-type galaxies have an almost constant inner surface brightness profile. The size of the core region correlates with the mass of the finally merged black hole. Here we report the first Euclid-based dynamical mass determination of a supermassive black hole. We study the centre of NGC 1272, the second most luminous elliptical galaxy in the Perseus cluster, combining the Euclid VIS photometry coming from the Early Release Observations of the Perseus cluster with VIRUS spectroscopic observations at the Hobby-Eberly Telescope. The core of NGC 1272 is detected on the Euclid VIS image. Its size is $1.29\pm 0.07''$ or 0.45 kpc, determined by fitting PSF-convolved core-S\'ersic and Nuker-law functions. The two-dimensional stellar kinematics of the galaxy is measured from the VIRUS spectra by deriving optimally regularized non-parametric line-of-sight velocity distributions. Dynamical models of the galaxy are constructed using our axisymmetric and triaxial Schwarzschild codes. We measure a black hole mass of $(5\pm3) \times 10^9 M_\odot$, in line with the expectation from the $M_{\rm BH}$-$r_{\rm b}$ correlation, but eight times larger than predicted by the $M_{\rm BH}$-$\sigma$ correlation (at $1.8\sigma$ significance). The core size, rather than the velocity dispersion, allows one to select galaxies harboring the most massive black holes. The spatial resolution, wide area coverage, and depth of the \Euclid (Wide and Deep) surveys allow us to find cores of passive galaxies larger than 2 kpc up to redshift 1., Comment: Accepted for publication in A&A
- Published
- 2024
16. gSeaGen code by KM3NeT: an efficient tool to propagate muons simulated with CORSIKA
- Author
-
Aiello, S., Albert, A., Alhebsi, A. R., Alshamsi, M., Garre, S. Alves, Ambrosone, A., Ameli, F., Andre, M., Androutsou, E., Aphecetche, L., Ardid, M., Ardid, S., Atmani, H., Aublin, J., Badaracco, F., Bailly-Salins, L., Bardačová, Z., Baret, B., Bariego-Quintana, A., Becherini, Y., Bendahman, M., Benfenati, F., Benhassi, M., Bennani, M., Benoit, D. M., Berbee, E., Bertin, V., Beyer, C., Biagi, S., Boettcher, M., Bonanno, D., Bouasla, A. B., Boumaaza, J., Bouta, M., Bouwhuis, M., Bozza, C., Bozza, R. M., Brânzaş, H., Bretaudeau, F., Breuhaus, M., Bruijn, R., Brunner, J., Bruno, R., Buis, E., Buompane, R., Busto, J., Caiffi, B., Calvo, D., Capone, A., Carenini, F., Carretero, V., Cartraud, T., Castaldi, P., Cecchini, V., Celli, S., Cerisy, L., Chabab, M., Chadolias, M., Chen, A., Cherubini, S., Chiarusi, T., Circella, M., Cocimano, R., Coelho, J. A. B., Coleiro, A., Condorelli, A., Coniglione, R., Coyle, P., Creusot, A., Cuttone, G., Dallier, R., Darras, Y., De Benedittis, A., De Martino, B., De Wasseige, G., Decoene, V., Del Rosso, I., Di Mauro, L. S., Di Palma, I., Díaz, A. F., Diego-Tortosa, D., Distefano, C., Domi, A., Donzaud, C., Dornic, D., Drakopoulou, E., Drouhin, D., Ducoin, J. -G., Dvornický, R., Eberl, T., Eckerová, E., Eddymaoui, A., van Eeden, T., Eff, M., van Eijk, D., Bojaddaini, I. El, Hedri, S. El, Ellajosyula, V., Enzenhöfer, A., Ferrara, G., Filipović, M. D., Filippini, F., Franciotti, D., Fusco, L. A., Gagliardini, S., Gal, T., Méndez, J. García, Soto, A. Garcia, Oliver, C. Gatius, Geißelbrecht, N., Genton, E., Ghaddari, H., Gialanella, L., Gibson, B. K., Giorgio, E., Goos, I., Goswami, P., Gozzini, S. R., Gracia, R., Guidi, C., Guillon, B., Gutiérrez, M., Haack, C., van Haren, H., Hassieiev, V., Heijboer, A., Hennig, L., Hernández-Rey, J. J., Ibnsalih, W. Idrissi, Illuminati, G., Joly, D., de Jong, M., de Jong, P., Jung, B. J., Kalaczyński, P., Kistauri, G., Kopper, C., Kouchner, A., Kueviakoe, V., Kulikovskiy, V., Kvatadze, R., Labalme, M., Lahmann, R., Lamoureux, M., Larosa, G., Lastoria, C., Lazo, A., Stum, S. Le, Lehaut, G., Lemaître, V., Leonora, E., Lessing, N., Levi, G., Clark, M. Lindsey, Longhitano, F., Magnani, F., Majumdar, J., Malerba, L., Mamedov, F., Manfreda, A., Marconi, M., Margiotta, A., Marinelli, A., Markou, C., Martin, L., Mastrodicasa, M., Mastroianni, S., Mauro, J., Miele, G., Migliozzi, P., Migneco, E., Mitsou, M. L., Mollo, C. M., Morales-Gallegos, L., Moretti, G., Moussa, A., Mateo, I. Mozun, Muller, R., Musone, M. R., Musumeci, M., Navas, S., Nayerhoda, A., Nicolau, C. A., Nkosi, B., Fearraigh, B. Ó, Oliviero, V., Orlando, A., Oukacha, E., Paesani, D., González, J. Palacios, Papalashvili, G., Parisi, V., Gomez, E. J. Pastor, Păun, A. M., Păvălaş, G. E., Pelegris, I., Martínez, S. Peña, Perrin-Terrin, M., Pestel, V., Pestes, R., Piattelli, P., Poirè, C., Popa, V., Pradier, T., Prado, J., Pulvirenti, S., Quiroz-Rangel, C. A., Rahaman, U., Randazzo, N., Razzaque, S., Rea, I. C., Real, D., Riccobene, G., Robinson, J., Romanov, A., Šaina, A., Greus, F. Salesa, Samtleben, D. F. E., Losa, A. Sánchez, Sanfilippo, S., Sanguineti, M., Santonocito, D., Sapienza, P., Schnabel, J., Schumann, J., Schutte, H. M., Seneca, J., Sennan, N., Setter, B., Sgura, I., Shanidze, R., Sharma, A., Shitov, Y., Šimkovic, F., Simonelli, A., Sinopoulou, A., Spisso, B., Spurio, M., Stavropoulos, D., Štekl, I., Taiuti, M., Tayalati, Y., Thiersen, H., Thoudam, S., de la Torre, P., Melo, I. Tosta e, Tragia, E., Trocmé, B., Tsourapis, V., Tudorache, A., Tzamariudaki, E., Ukleja, A., Vacheret, A., Valsecchi, V., Van Elewyck, V., Vannoye, G., Vasileiadis, G., de Sola, F. Vazquez, Veutro, A., Viola, S., Vivolo, D., van Vliet, A., Warnhofer, H., Weissbrod, S., de Wolf, E., Lhenry-Yvon, I., Zarpapis, G., Zavatarelli, S., Zegarelli, A., Zito, D., Zornoza, J. D., Zúñiga, J., and Zywucka, N.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Computational Physics - Abstract
The KM3NeT Collaboration has tackled a common challenge faced by the astroparticle physics community, namely adapting the experiment-specific simulation software to work with the CORSIKA air shower simulation output. The proposed solution is an extension of the open-source code gSeaGen, allowing for the transport of muons generated by CORSIKA to a detector of any size at an arbitrary depth. The gSeaGen code was not only extended in terms of functionalities but also underwent a thorough redesign of the muon propagation routine, resulting in a more accurate and efficient simulation. This paper presents the capabilities of the new gSeaGen code as well as prospects for further developments., Comment: 27 pages, 13 figures
- Published
- 2024
17. Toward Generalizable Multiple Sclerosis Lesion Segmentation Models
- Author
-
Badea, Liviu and Popa, Maria
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Automating Multiple Sclerosis (MS) lesion segmentation would be of great benefit in initial diagnosis as well as monitoring disease progression. Deep learning based segmentation models perform well in many domains, but the state-of-the-art in MS lesion segmentation is still suboptimal. Complementary to previous MS lesion segmentation challenges which focused on optimizing the performance on a single evaluation dataset, this study aims to develop models that generalize across diverse evaluation datasets, mirroring real-world clinical scenarios that involve varied scanners, settings, and patient cohorts. To this end, we used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture. The resulting models demonstrate consistent performance across the remaining test datasets (are generalizable), with larger and more heterogeneous datasets leading to better models. To the best of our knowledge, this represents the most comprehensive cross-dataset evaluation of MS lesion segmentation models to date using publicly available datasets. Additionally, explicitly enhancing dataset size by merging datasets improved model performance. Specifically, a model trained on the combined MSSEG2016-train, ISBI2015, and 3D-MR-MS datasets surpasses the winner of the MICCAI-2016 competition. Moreover, we demonstrate that the generalizability of our models also relies on our original use of quantile normalization on MRI intensities.
- Published
- 2024
18. Lefschetz theorems, Q-factoriality, and Hodge symmetry for singular varieties
- Author
-
Park, Sung Gi and Popa, Mihnea
- Subjects
Mathematics - Algebraic Geometry ,14B05, 14C30, 14F10, 32S35 - Abstract
We prove a number of new results concerning the topology and Hodge theory of singular varieties. A common theme is that concrete conditions on the complexity of the singularities are closely related to the symmetries of the Hodge-Du Bois diamond., Comment: 50 pages
- Published
- 2024
19. ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation
- Author
-
Roy, Kashob Kumar, Akash, Pritom Saha, Chang, Kevin Chen-Chuan, and Popa, Lucian
- Subjects
Computer Science - Information Retrieval - Abstract
Open-domain long-form text generation requires generating coherent, comprehensive responses that address complex queries with both breadth and depth. This task is challenging due to the need to accurately capture diverse facets of input queries. Existing iterative retrieval-augmented generation (RAG) approaches often struggle to delve deeply into each facet of complex queries and integrate knowledge from various sources effectively. This paper introduces ConTReGen, a novel framework that employs a context-driven, tree-structured retrieval approach to enhance the depth and relevance of retrieved content. ConTReGen integrates a hierarchical, top-down in-depth exploration of query facets with a systematic bottom-up synthesis, ensuring comprehensive coverage and coherent integration of multifaceted information. Extensive experiments on multiple datasets, including LFQA and ODSUM, alongside a newly introduced dataset, ODSUM-WikiHow, demonstrate that ConTReGen outperforms existing state-of-the-art RAG models., Comment: Accepted at EMNLP'24 Findings
- Published
- 2024
20. JudgeBench: A Benchmark for Evaluating LLM-based Judges
- Author
-
Tan, Sijun, Zhuang, Siyuan, Montgomery, Kyle, Tang, William Y., Cuadron, Alejandro, Wang, Chenguang, Popa, Raluca Ada, and Stoica, Ion
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench ., Comment: preprint
- Published
- 2024
21. Euclid: Relativistic effects in the dipole of the 2-point correlation function
- Author
-
Lepori, F., Schulz, S., Tutusaus, I., Breton, M. -A., Saga, S., Viglione, C., Adamek, J., Bonvin, C., Dam, L., Fosalba, P., Amendola, L., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Degaudenzi, H., De Lucia, G., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Keihänen, E., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rosset, C., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zucca, E., Burigana, C., Fabbian, G., Finelli, F., Pezzotta, A., Scottez, V., and Viel, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitational redshift and Doppler effects give rise to an antisymmetric component of the galaxy correlation function when cross-correlating two galaxy populations or two different tracers. In this paper, we assess the detectability of these effects in the Euclid spectroscopic galaxy survey. We model the impact of gravitational redshift on the observed redshift of galaxies in the Flagship mock catalogue using a Navarro-Frenk-White profile for the host haloes. We isolate these relativistic effects, largely subdominant in the standard analysis, by splitting the galaxy catalogue into two populations of faint and bright objects and estimating the dipole of their cross-correlation in four redshift bins. In the simulated catalogue, we detect the dipole signal on scales below $30\,h^{-1}{\rm Mpc}$, with detection significances of $4\,\sigma$ and $3\,\sigma$ in the two lowest redshift bins, respectively. At higher redshifts, the detection significance drops below $2\,\sigma$. Overall, we estimate the total detection significance in the Euclid spectroscopic sample to be approximately $6\,\sigma$. We find that on small scales, the major contribution to the signal comes from the nonlinear gravitational potential. Our study on the Flagship mock catalogue shows that this observable can be detected in Euclid Data Release 2 and beyond., Comment: 21 pages, 11 figures, 1 appendix; submitted on behalf of the Euclid Collaboration
- Published
- 2024
22. Does SpatioTemporal information benefit Two video summarization benchmarks?
- Author
-
Ganesh, Aashutosh, Popa, Mirela, Odijk, Daan, and Tintarev, Nava
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Multimedia - Abstract
An important aspect of summarizing videos is understanding the temporal context behind each part of the video to grasp what is and is not important. Video summarization models have in recent years modeled spatio-temporal relationships to represent this information. These models achieved state-of-the-art correlation scores on important benchmark datasets. However, what has not been reviewed is whether spatio-temporal relationships are even required to achieve state-of-the-art results. Previous work in activity recognition has found biases, by prioritizing static cues such as scenes or objects, over motion information. In this paper we inquire if similar spurious relationships might influence the task of video summarization. To do so, we analyse the role that temporal information plays on existing benchmark datasets. We first estimate a baseline with temporally invariant models to see how well such models rank on benchmark datasets (TVSum and SumMe). We then disrupt the temporal order of the videos to investigate the impact it has on existing state-of-the-art models. One of our findings is that the temporally invariant models achieve competitive correlation scores that are close to the human baselines on the TVSum dataset. We also demonstrate that existing models are not affected by temporal perturbations. Furthermore, with certain disruption strategies that shuffle fixed time segments, we can actually improve their correlation scores. With these results, we find that spatio-temporal relationship play a minor role and we raise the question whether these benchmarks adequately model the task of video summarization. Code available at: https://github.com/AashGan/TemporalPerturbSum, Comment: Accepted for presentation at AEQUITAS workshop, Co-located with ECAI 2024
- Published
- 2024
23. Search for quantum decoherence in neutrino oscillations with six detection units of KM3NeT/ORCA
- Author
-
Aiello, S., Albert, A., Alhebsi, A. R., Alshamsi, M., Garre, S. Alves, Ambrosone, A., Ameli, F., Andre, M., Aphecetche, L., Ardid, M., Ardid, S., Atmani, H., Aublin, J., Badaracco, F., Bailly-Salins, L., Bardacova, Z., Baret, B., Bariego-Quintana, A., Becherini, Y., Bendahman, M., Benfenati, F., Benhassi, M., Bennani, M., Benoit, D. M., Berbee, E., Bertin, V., Biagi, S., Boettcher, M., Bonanno, D., Bouasla, A. B., Boumaaza, J., Bouta, M., Bouwhuis, M., Bozza, C., Bozza, R. M., Branzas, H., Bretaudeau, F., Breuhaus, M., Bruijn, R., Brunner, J., Bruno, R., Buis, E., Buompane, R., Busto, J., Caiffi, B., Calvo, D., Capone, A., Carenini, F., Carretero, V., Cartraud, T., Castaldi, P., Cecchini, V., Celli, S., Cerisy, L., Chabab, M., Chen, A., Cherubini, S., Chiarusi, T., Circella, M., Cocimano, R., Coelho, J. A. B., Coleiro, A., Condorelli, A., Coniglione, R., Coyle, P., Creusot, A., Cuttone, G., Dallier, R., De Benedittis, A., De Martino, B., De Wasseige, G., Decoene, V., Del Rosso, I., Di Mauro, L. S., Di Palma, I., Diaz, A. F., Diego-Tortosa, D., Distefano, C., Domi, A., Donzaud, C., Dornic, D., Drakopoulou, E., Drouhin, D., Ducoin, J. -G., Dvornicky, R., Eberl, T., Eckerova, E., Eddymaoui, A., van Eeden, T., Eff, M., van Eijk, D., Bojaddaini, I. El, Hedri, S. El, Ellajosyula, V., Enzenhoefer, A., Ferrara, G., Filipovic, M. D., Filippini, F., Franciotti, D., Fusco, L. A., Gagliardini, S., Gal, T., Mendez, J. Garcia, Soto, A. Garcia, Oliver, C. Gatius, Geißelbrecht, N., Genton, E., Ghaddari, H., Gialanella, L., Gibson, B. K., Giorgio, E., Goos, I., Goswami, P., Gozzini, S. R., Gracia, R., Guidi, C., Guillon, B., Gutierrez, M., Haack, C., van Haren, H., Heijboer, A., Hennig, L., Hernandez-Rey, J. J., Ibnsalih, W. Idrissi, Illuminati, G., Joly, D., de Jong, M., de Jong, P., Jung, B. J., Kistauri, G., Kopper, C., Kouchner, A., Kovalev, Y. Y., Kueviakoe, V., Kulikovskiy, V., Kvatadze, R., Labalme, M., Lahmann, R., Lamoureux, M., Larosa, G., Lastoria, C., Lazo, A., Stum, S. Le, Lehaut, G., Lemaitre, V., Leonora, E., Lessing, N., Levi, G., Clark, M. Lindsey, Longhitano, F., Magnani, F., Majumdar, J., Malerba, L., Mamedov, F., Manczak, J., Manfreda, A., Marconi, M., Margiotta, A., Marinelli, A., Markou, C., Martin, L., Mastrodicasa, M., Mastroianni, S., Mauro, J., Miele, G., Migliozzi, P., Migneco, E., Mitsou, M. L., Mollo, C. M., Morales-Gallegos, L., Moussa, A., Mateo, I. Mozun, Muller, R., Musone, M. R., Musumeci, M., Navas, S., Nayerhoda, A., Nicolau, C. A., Nkosi, B., Fearraigh, B. O., Oliviero, V., Orlando, A., Oukacha, E., Gonzalez, D. Paesaniy J. Palacios, Papalashvili, G., Parisi, V., Gomez, E. J. Pastor, Pastore, C., Paun, A. M., Pavala, G. E., Martinez, S. Pena, Perrin-Terrin, M., Pestel, V., Pestes, R., Piattelli, P., Plavin, A., Poire, C., Popa, V., Pradier, T., Prado, J., Pulvirenti, S., Quiroz-Rangel, C. A., Randazzo, N., Razzaque, S., Rea, I. C., Real, D., Robinson, G. Riccobene. J., Romanov, A., Ros, E., Saina, A., Greus, F. Salesa, Samtleben, D. F. E., Losa, A. Sanchez, Sanfilippo, S., Sanguineti, M., Santonocito, D., Sapienza, P., Schnabel, J., Schumann, J., Schutte, H. M., Seneca, J., Sgura, I., Shanidze, R., Sharma, A., Shitov, Y., Simkovic, F., Simonelli, A., Sinopoulou, A., Spisso, B., Spurio, M., Stavropoulos, D., Stekl, I., Stellacci, S. M., Taiuti, M., Tayalati, Y., Thiersen, H., Thoudam, S., Tosta, I., Melo, e, Trocme, B., Tsourapis, V., Tudorache, A., Tzamariudaki, E., Ukleja, A., Vacheret, A., Valsecchi, V., Van Elewyck, V., Vannoye, G., Vasileiadis, G., de Sola, F. Vazquez, Veutro, A., Viola, S., Vivolo, D., van Vliet, A., de Wolf, E., Lhenry-Yvon, I., Zavatarelli, S., Zegarelli, A., Zito, D., Zornoza, J. D., Zuniga, J., and Zywucka, N.
- Subjects
High Energy Physics - Experiment - Abstract
Neutrinos described as an open quantum system may interact with the environment which introduces stochastic perturbations to their quantum phase. This mechanism leads to a loss of coherence along the propagation of the neutrino $-$ a phenomenon commonly referred to as decoherence $-$ and ultimately, to a modification of the oscillation probabilities. Fluctuations in space-time, as envisaged by various theories of quantum gravity, are a potential candidate for a decoherence-inducing environment. Consequently, the search for decoherence provides a rare opportunity to investigate quantum gravitational effects which are usually beyond the reach of current experiments. In this work, quantum decoherence effects are searched for in neutrino data collected by the KM3NeT/ORCA detector from January 2020 to November 2021. The analysis focuses on atmospheric neutrinos within the energy range of a few GeV to $100\,\mathrm{GeV}$. Adopting the open quantum system framework, decoherence is described in a phenomenological manner with the strength of the effect given by the parameters $\Gamma_{21}$ and $\Gamma_{31}$. Following previous studies, a dependence of the type $\Gamma_{ij} \propto (E/E_0)^n$ on the neutrino energy is assumed and the cases $n = -2,-1$ are explored. No significant deviation with respect to the standard oscillation hypothesis is observed. Therefore, $90\,\%$ CL upper limits are estimated as $\Gamma_{21} < 4.6\cdot 10^{-21}\,$GeV and $\Gamma_{31} < 8.4\cdot 10^{-21}\,$GeV for $n = -2$, and $\Gamma_{21} < 1.9\cdot 10^{-22}\,$GeV and $\Gamma_{31} < 2.7\cdot 10^{-22}\,$GeV for $n = -1$, respectively., Comment: 17 pages, 5 figures
- Published
- 2024
24. Injectivity and Vanishing for the Du Bois Complexes of Isolated Singularities
- Author
-
Popa, Mihnea, Shen, Wanchun, and Vo, Anh Duc
- Subjects
Mathematics - Algebraic Geometry ,14B05, 14F17, 32S35 - Abstract
We prove an injectivity theorem for the cohomology of the Du Bois complexes of varieties with isolated singularities. We use this to deduce vanishing statements for the cohomologies of higher Du Bois complexes of such varieties. Besides some extensions and conjectures in the non-isolated case, we also provide analogues for intersection complexes., Comment: 26 pages; small corrections and additions made
- Published
- 2024
25. CEF: Connecting Elaborate Federal QKD Networks
- Author
-
Popa, Alin-Bogdan and Popescu, Pantelimon
- Subjects
Computer Science - Networking and Internet Architecture ,Computer Science - Cryptography and Security ,Computer Science - Emerging Technologies - Abstract
As QKD infrastructure becomes increasingly complex while being developed by different actors (typically national governments), interconnecting them into a federated network of very elaborate sub-networks that maintain a high degree of autonomy will pose unique challenges. We identify several such challenges and propose a 4-step orchestration framework to address them based on centralized research, target network planning, optimal QKD design, and protocol enforcement.
- Published
- 2024
26. Personalized Speech Emotion Recognition in Human-Robot Interaction using Vision Transformers
- Author
-
Mishra, Ruchik, Frye, Andrew, Rayguru, Madan Mohan, and Popa, Dan O.
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Human-Computer Interaction ,Computer Science - Robotics ,Computer Science - Sound - Abstract
Emotions are an essential element in verbal communication, so understanding individuals' affect during a human-robot interaction (HRI) becomes imperative. This paper investigates the application of vision transformer models, namely ViT (Vision Transformers) and BEiT (BERT Pre-Training of Image Transformers) pipelines, for Speech Emotion Recognition (SER) in HRI. The focus is to generalize the SER models for individual speech characteristics by fine-tuning these models on benchmark datasets and exploiting ensemble methods. For this purpose, we collected audio data from different human subjects having pseudo-naturalistic conversations with the NAO robot. We then fine-tuned our ViT and BEiT-based models and tested these models on unseen speech samples from the participants. In the results, we show that fine-tuning vision transformers on benchmark datasets and and then using either these already fine-tuned models or ensembling ViT/BEiT models gets us the highest classification accuracies per individual when it comes to identifying four primary emotions from their speech: neutral, happy, sad, and angry, as compared to fine-tuning vanilla-ViTs or BEiTs., Comment: Will be submitted to IEEE for possible publication
- Published
- 2024
27. Euclid preparation. Angular power spectra from discrete observations
- Author
-
Euclid Collaboration, Tessore, N., Joachimi, B., Loureiro, A., Hall, A., Cañas-Herrera, G., Tutusaus, I., Jeffrey, N., Naidoo, K., McEwen, J. D., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bernardeau, F., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Mohr, J. J., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Mancini, A. Spurio, Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Benielli, D., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Cooray, A. R., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Kruk, S., Lacasa, F., Lattanzi, M., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Macias-Perez, J., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Moretti, C., Morgante, G., Murray, C., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Rollins, R. P., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Simon, P., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Vielzeuf, P., Brown, M. L., and Sellentin, E.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ("shot noise") in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release., Comment: 27 pages, 12 figures. Submitted to A&A. Code available at https://github.com/heracles-ec/heracles
- Published
- 2024
28. Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax
- Author
-
Euclid Collaboration, Zalesky, L., McPartland, C. J. R., Weaver, J. R., Toft, S., Sanders, D. B., Mobasher, B., Suzuki, N., Szapudi, I., Valdes, I., Murphree, G., Chartab, N., Allen, N., Taamoli, S., Barrow, S. W. J., Ortiz, O. Chávez, Finkelstein, S. L., Gwyn, S., Sawicki, M., McCracken, H. J., Stern, D., Dannerbauer, H., Altieri, B., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sapone, D., Scaramella, R., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Gracia-Carpio, J., Mauri, N., Nucita, A. A., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Chary, R., Contarini, S., Contini, T., Cooray, A. R., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Walton, Nicholas A., Odier, J., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Scarlata, C., Schneider, A., Sereno, M., Silvestri, A., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tao, C., Testera, G., Teyssier, R., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Zinchenko, I. A.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data.
- Published
- 2024
29. Euclid preparation. The Cosmic Dawn Survey (DAWN) of the Euclid Deep and Auxiliary Fields
- Author
-
Euclid Collaboration, McPartland, C. J. R., Zalesky, L., Weaver, J. R., Toft, S., Sanders, D. B., Mobasher, B., Suzuki, N., Szapudi, I., Valdes, I., Murphree, G., Chartab, N., Allen, N., Taamoli, S., Eisenhardt, P. R. M., Arnouts, S., Atek, H., Brinchmann, J., Castellano, M., Chary, R., Ortiz, O. Chávez, Cuby, J. -G., Finkelstein, S. L., Goto, T., Gwyn, S., Harikane, Y., Inoue, A. K., McCracken, H. J., Mohr, J. J., Oesch, P. A., Ouchi, M., Oguri, M., Rhodes, J., Rottgering, H. J. A., Sawicki, M., Scaramella, R., Scarlata, C., Silverman, J. D., Stern, D., Teplitz, H. I., Shuntov, M., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Aussel, H., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bonino, D., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespi, P., Tavagnacco, D., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Di Ferdinando, D., Farinelli, R., Gracia-Carpio, J., Mauri, N., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bethermin, M., Borgani, S., Borlaff, A. S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Davini, S., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Vigo, J. A. Escartin, Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Musi, P., Walton, Nicholas A., Odier, J., Patrizii, L., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tao, C., Testera, G., Teyssier, R., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Shankar, F.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Euclid will provide deep NIR imaging to $\sim$26.5 AB magnitude over $\sim$59 deg$^2$ in its deep and auxiliary fields. The Cosmic DAWN survey complements the deep Euclid data with matched depth multiwavelength imaging and spectroscopy in the UV--IR to provide consistently processed Euclid selected photometric catalogs, accurate photometric redshifts, and measurements of galaxy properties to a redshift of $z\sim 10$. In this paper, we present an overview of the survey, including the footprints of the survey fields, the existing and planned observations, and the primary science goals for the combined data set., Comment: 16 pages, 10 figures, submitted to A&A; Updated references; Updated author list
- Published
- 2024
30. Euclid preparation. Exploring the properties of proto-clusters in the Simulated Euclid Wide Survey
- Author
-
Euclid Collaboration, Böhringer, H., Chon, G., Cucciati, O., Dannerbauer, H., Bolzonella, M., De Lucia, G., Cappi, A., Moscardini, L., Giocoli, C., Castignani, G., Hatch, N. A., Andreon, S., Bañados, E., Ettori, S., Fontanot, F., Gully, H., Hirschmann, M., Maturi, M., Mei, S., Pozzetti, L., Schlenker, T., Spinelli, M., Aghanim, N., Altieri, B., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Scodeggio, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Alvi, S., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Costanzi, M., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gonzalez, A. H., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Shankar, F., Simon, P., Mancini, A. Spurio, Stadel, J., Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Verza, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Galaxy proto-clusters are receiving an increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy population are happening at early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of proto-clusters over a large fraction of the sky (14 500 square degrees). In this paper, we explore the expected observational properties of proto-clusters in the Euclid Wide Survey by means of theoretical models and simulations. We provide an overview of the predicted proto-cluster extent, galaxy density profiles, mass-richness relations, abundance, and sky-filling as a function of redshift. Useful analytical approximations for the functions of these properties are provided. The focus is on the redshift range z= 1.5 to 4. We discuss in particular the density contrast with which proto-clusters can be observed against the background in the galaxy distribution if photometric galaxy redshifts are used as supplied by the ESA Euclid mission together with the ground-based photometric surveys. We show that the obtainable detection significance is sufficient to find large numbers of interesting proto-cluster candidates. For quantitative studies, additional spectroscopic follow-up is required to confirm the proto-clusters and establish their richness., Comment: Submitted to Astronomy and Astrophysics, 24 pages, 28 figures
- Published
- 2024
31. Euclid preparation. LI. Forecasting the recovery of galaxy physical properties and their relations with template-fitting and machine-learning methods
- Author
-
Euclid Collaboration, Enia, A., Bolzonella, M., Pozzetti, L., Humphrey, A., Cunha, P. A. C., Hartley, W. G., Dubath, F., Paltani, S., Lopez, X. Lopez, Quai, S., Bardelli, S., Bisigello, L., Cavuoti, S., De Lucia, G., Ginolfi, M., Grazian, A., Siudek, M., Tortora, C., Zamorani, G., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Fotopoulou, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Pasian, F., Pedersen, K., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sapone, D., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zucca, E., Biviano, A., Boucaud, A., Burigana, C., Calabrese, M., Vigo, J. A. Escartin, Gracia-Carpio, J., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bergamini, P., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Contini, T., Cooray, A. R., Cucciati, O., Davini, S., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Hall, A., Hemmati, S., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Graet, J. Le, Legrand, L., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Zinchenko, I. A., Rodighiero, G., and Talia, M.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Euclid will collect an enormous amount of data during the mission's lifetime, observing billions of galaxies in the extragalactic sky. Along with traditional template-fitting methods, numerous machine learning algorithms have been presented for computing their photometric redshifts and physical parameters (PPs), requiring significantly less computing effort while producing equivalent performance measures. However, their performance is limited by the quality and amount of input information, to the point where the recovery of some well-established physical relationships between parameters might not be guaranteed. To forecast the reliability of Euclid photo-$z$s and PPs calculations, we produced two mock catalogs simulating Euclid photometry. We simulated the Euclid Wide Survey (EWS) and Euclid Deep Fields (EDF). We tested the performance of a template-fitting algorithm (Phosphoros) and four ML methods in recovering photo-$z$s, PPs (stellar masses and star formation rates), and the SFMS. To mimic the Euclid processing as closely as possible, the models were trained with Phosphoros-recovered labels. For the EWS, we found that the best results are achieved with a mixed labels approach, training the models with wide survey features and labels from the Phosphoros results on deeper photometry, that is, with the best possible set of labels for a given photometry. This imposes a prior, helping the models to better discern cases in degenerate regions of feature space, that is, when galaxies have similar magnitudes and colors but different redshifts and PPs, with performance metrics even better than those found with Phosphoros. We found no more than 3% performance degradation using a COSMOS-like reference sample or removing u band data, which will not be available until after data release DR1. The best results are obtained for the EDF, with appropriate recovery of photo-$z$, PPs, and the SFMS., Comment: 26 pages, 13 figures. Accepted for publication on A&A
- Published
- 2024
32. Euclid preparation. Sensitivity to non-standard particle dark matter model
- Author
-
Euclid Collaboration, Lesgourgues, J., Schwagereit, J., Bucko, J., Parimbelli, G., Giri, S. K., Hervas-Peters, F., Schneider, A., Archidiacono, M., Pace, F., Sakr, Z., Amara, A., Amendola, L., Andreon, S., Auricchio, N., Aussel, H., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sánchez, A. G., Sapone, D., Sartoris, B., Scaramella, R., Schewtschenko, J. A., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Farinelli, R., Gracia-Carpio, J., Mauri, N., Nucita, A. A., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Ballardini, M., Bertacca, D., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hildebrandt, H., Hjorth, J., Munñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sereno, M., Simon, P., Mancini, A. Spurio, Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Verza, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of these surveys on the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics; unstable dark matter decaying either into massless or massive relics; and dark matter experiencing feeble interactions with relativistic relics. We model these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We use a mock Euclid likelihood to fit mock data and infer error bars on dark matter parameters marginalised over other parameters. We find that the Euclid photometric probe (alone or in combination with CMB data from the Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: inclusion of photometric galaxy clustering data, minimum angular scale taken into account, modelling of baryonic feedback effects. We conclude that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm would have profound implications for cosmology and particle physics., Comment: 31 pages, 21 figures
- Published
- 2024
33. Synthesis, Characterization and Antimicrobial Activity of Multiple Morphologies of Gold/Platinum Doped Bismuth Oxide Nanostructures
- Author
-
Cătălin Ianăși, Nicoleta Sorina Nemeş, Bogdan Pascu, Radu Lazău, Adina Negrea, Petru Negrea, Narcis Duteanu, Mihaela Ciopec, Jiri Plocek, Popa Alexandru, Bianca Bădescu, Daniel Marius Duda-Seiman, and Delia Muntean
- Subjects
bismuth oxide ,sol-gel ,gold ,platinum ,antimicrobial activity ,structural morphology ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Bismuth oxides were synthesized from bismuth carbonate using the sol-gel method. Studies have described the formation of Bi2O3, as a precursor of HNO3 dissolution, and intermediate oxides, such as BixOy when using H2SO4 and H3PO4. The average size of the crystallite calculated from Scherrer’s formula ranged from 9 to 19 nm, according to X-ray diffraction. The FTIR analysis showed the presence of specific Bi2O3 bands when using HNO3 and of crystalline phases of “bismuth oxide sulphate” when using H2SO4 and “bismuth phosphate” when using H3PO4. The TG curves showed major mass losses and specific thermal effects, delimited in four temperature zones for materials synthesized with HNO3 (with loss of mass between 24% and 50%) and H2SO4 (with loss of mass between 45% and 76%), and in three temperature zones for materials synthesized with H3PO4 (with loss of mass between 13% and 43%). Further, the thermal stability indicates that materials have been improved by the addition of a polymer or polymer and carbon. Confocal laser scanning microscopy showed decreased roughness in the series, [BixOy]N > [BixOy-6% PVA]N > [BixOy-C-6% PVA]N, and increased roughness for materials [BixOy]S, [BixOy-6% PVA]S, [BixOy-C-6% PVA]S, [BixOy]P, [BixOy-6% PVA]P and [BixOy-C-6% PVA]P. The morphological analysis (electronic scanning microscopy) of the synthesized materials showed a wide variety of forms: overlapping nanoplates ([BixOy]N or [BixOy]S), clusters of angular forms ([BixOy-6% PVA]N), pillars ([BixOy-6% PVA]S-Au), needle particles ([BixOy-Au], [BixOy-6% PVA]S-Au, [BixOy-C-6% PVA]S-Au), spherical particles ([BixOy-C-6% PVA]P-Pt), 2D plates ([BixOy]P-Pt) and 3D nanometric plates ([BixOy-C-6% PVA]S-Au). For materials obtained in the first synthesis stage, antimicrobial activity increased in the series [BixOy]N > [BixOy]S > [BixOy]P. For materials synthesized in the second synthesis stage, when polymer (polyvinyl alcohol, PVA) was added, maximum antimicrobial activity, regardless of the microbial species tested, was present in the material [BixOy-6% PVA]S. For the materials synthesized in the third stage, to which graphite and 6% PVA were added, the best antimicrobial activity was in the material [BixOy-C-6% PVA]P. Materials synthesized and doped with metal ions (gold or platinum) showed significant antimicrobial activity for the tested microbial species.
- Published
- 2023
- Full Text
- View/download PDF
34. Euclid preparation. XLIX. Selecting active galactic nuclei using observed colours
- Author
-
Euclid Collaboration, Bisigello, L., Massimo, M., Tortora, C., Fotopoulou, S., Allevato, V., Bolzonella, M., Gruppioni, C., Pozzetti, L., Rodighiero, G., Serjeant, S., Cunha, P. A. C., Gabarra, L., Feltre, A., Humphrey, A., La Franca, F., Landt, H., Mannucci, F., Prandoni, I., Radovich, M., Ricci, F., Salvato, M., Shankar, F., Stern, D., Spinoglio, L., Vergani, D., Vignali, C., Zamorani, G., Yung, L. Y. A., Charlot, S., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Bonino, D., Branchini, E., Brau-Nogue, S., Brescia, M., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Zoubian, J., Zucca, E., Biviano, A., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Fabbian, G., Graciá-Carpio, J., Marcin, S., Mauri, N., Sakr, Z., Scottez, V., Tenti, M., Akrami, Y., Baccigalupi, C., Ballardini, M., Bethermin, M., Blanchard, A., Borgani, S., Borla, A. S., Bruton, S., Burigana, C., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Chambers, K. C., Coupon, A. R. Cooray J., Cucciati, O., Davini, S., De Lucia, G., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Vigo, J. A. Escartin, Escoffier, S., Ferrero, I., Finelli, F., Ganga, K., García-Bellido, J., Giacomini, F., Gozaliasl, G., Gregorio, A., Hildebrandt, H., Muñoz, A. Jiminez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mainetti, G., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Patrizii, L., Popa, V., Porciani, C., Potter, D., Pöntinen, M., Rocci, P. -F., Sánchez, A. G., Schneider, A., Sereno, M., Simon, P., Stadel, J., Stanford, S. A., Steinwagner, J., Testera, G., Tewes, M., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Viel, M., and Zinchenko, I. A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Euclid will cover over 14000 $deg^{2}$ with two optical and near-infrared spectro-photometric instruments, and is expected to detect around ten million active galactic nuclei (AGN). This unique data set will make a considerable impact on our understanding of galaxy evolution and AGN. In this work we identify the best colour selection criteria for AGN, based only on Euclid photometry or including ancillary photometric observations, such as the data that will be available with the Rubin legacy survey of space and time (LSST) and observations already available from Spitzer/IRAC. The analysis is performed for unobscured AGN, obscured AGN, and composite (AGN and star-forming) objects. We make use of the spectro-photometric realisations of infrared-selected targets at all-z (SPRITZ) to create mock catalogues mimicking both the Euclid Wide Survey (EWS) and the Euclid Deep Survey (EDS). Using these catalogues we estimate the best colour selection, maximising the harmonic mean (F1) of completeness and purity. The selection of unobscured AGN in both Euclid surveys is possible with Euclid photometry alone with F1=0.22-0.23, which can increase to F1=0.43-0.38 if we limit at z>0.7. Such selection is improved once the Rubin/LSST filters (a combination of the u, g, r, or z filters) are considered, reaching F1=0.84 and 0.86 for the EDS and EWS, respectively. The combination of a Euclid colour with the [3.6]-[4.5] colour, which is possible only in the EDS, results in an F1-score of 0.59, improving the results using only Euclid filters, but worse than the selection combining Euclid and LSST. The selection of composite ($f_{{\rm AGN}}$=0.05-0.65 at 8-40 $\mu m$) and obscured AGN is challenging, with F1<0.3 even when including ancillary data. This is driven by the similarities between the broad-band spectral energy distribution of these AGN and star-forming galaxies in the wavelength range 0.3-5 $\mu m$., Comment: 25 pages, 28 figures, accepted for publication on A&A
- Published
- 2024
35. Continuations: What Have They Ever Done for Us? (Experience Report)
- Author
-
Kaufmann, Marc and Popa, Bogdan
- Subjects
Computer Science - Software Engineering - Abstract
Surveys and experiments in economics involve stateful interactions: participants receive different messages based on earlier answers, choices, and performance, or trade across many rounds with other participants. In the design of Congame, a platform for running such economic studies, we decided to use delimited continuations to manage the common flow of participants through a study. Here we report on the positives of this approach, as well as some challenges of using continuations, such as persisting data across requests, working with dynamic variables, avoiding memory leaks, and the difficulty of debugging continuations.
- Published
- 2024
- Full Text
- View/download PDF
36. Measurement of neutrino oscillation parameters with the first six detection units of KM3NeT/ORCA
- Author
-
KM3NeT Collaboration, Aiello, S., Albert, A., Alhebsi, A. R., Alshamsi, M., Garre, S. Alves, Ambrosone, A., Ameli, F., Andre, M., Aphecetche, L., Ardid, M., Ardid, S., Atmani, H., Aublin, J., Badaracco, F., Bailly-Salins, L., Bardačová, Z., Baret, B., Bariego-Quintana, A., Becherini, Y., Bendahman, M., Benfenati, F., Benhassi, M., Bennani, M., Benoit, D. M., Berbee, E., Bertin, V., Biagi, S., Boettcher, M., Bonanno, D., Bouasla, A. B., Boumaaza, J., Bouta, M., Bouwhuis, M., Bozza, C., Bozza, R. M., Brânzaş, H., Bretaudeau, F., Breuhaus, M., Bruijn, R., Brunner, J., Bruno, R., Buis, E., Buompane, R., Busto, J., Caiffi, B., Calvo, D., Capone, A., Carenini, F., Carretero, V., Cartraud, T., Castaldi, P., Cecchini, V., Celli, S., Cerisy, L., Chabab, M., Chen, A., Cherubini, S., Chiarusi, T., Circella, M., Cocimano, R., Coelho, J. A. B., Coleiro, A., Condorelli, A., Coniglione, R., Coyle, P., Creusot, A., Cuttone, G., Dallier, R., De Benedittis, A., De Martino, B., De Wasseige, G., Decoene, V., Del Rosso, I., Di Mauro, L. S., Di Palma, I., Díaz, A. F., Diego-Tortosa, D., Distefano, C., Domi, A., Donzaud, C., Dornic, D., Drakopoulou, E., Drouhin, D., Ducoin, J. -G., Dvornický, R., Eberl, T., Eckerová, E., Eddymaoui, A., van Eeden, T., Eff, M., van Eijk, D., Bojaddaini, I. El, Hedri, S. El, Ellajosyula, V., Enzenhöfer, A., Ferrara, G., Filipović, M. D., Filippini, F., Franciotti, D., Fusco, L. A., Gagliardini, S., Gal, T., Méndez, J. García, Soto, A. Garcia, Oliver, C. Gatius, Geißelbrecht, N., Genton, E., Ghaddari, H., Gialanella, L., Gibson, B. K., Giorgio, E., Goos, I., Goswami, P., Gozzini, S. R., Gracia, R., Guidi, C., Guillon, B., Gutiérrez, M., Haack, C., van Haren, H., Heijboer, A., Hennig, L., Hernández-Rey, J. J., Ibnsalih, W. Idrissi, Illuminati, G., Joly, D., de Jong, M., de Jong, P., Jung, B. J., Kistauri, G., Kopper, C., Kouchner, A., Kovalev, Y. Y., Kueviakoe, V., Kulikovskiy, V., Kvatadze, R., Labalme, M., Lahmann, R., Lamoureux, M., Larosa, G., Lastoria, C., Lazo, A., Stum, S. Le, Lehaut, G., Lemaítre, V., Leonora, E., Lessing, N., Levi, G., Clark, M. Lindsey, Longhitano, F., Magnani, F., Majumdar, J., Malerba, L., Mamedov, F., Mańczak, J., Manfreda, A., Marconi, M., Margiotta, A., Marinelli, A., Markou, C., Martin, L., Mastrodicasa, M., Mastroianni, S., Mauro, J., Miele, G., Migliozzi, P., Migneco, E., Mitsou, M. L., Mollo, C. M., Morales-Gallegos, L., Moussa, A., Mateo, I. Mozun, Muller, R., Musone, M. R., Musumeci, M., Navas, S., Nayerhoda, A., Nicolau, C. A., Nkosi, B., Fearraigh, B. Ó, Oliviero, V., Orlando, A., Oukacha, E., Paesani, D., González, J. Palacios, Papalashvili, G., Parisi, V., Gomez, E. J. Pastor, Păun, A. M., Păvălaş, G. E., Martínez, S. Peña, Perrin-Terrin, M., Pestel, V., Pestes, R., Piattelli, P., Plavin, A., Poirè, C., Popa, V., Pradier, T., Prado, J., Pulvirenti, S., Quiroz-Rangel, C. A., Randazzo, N., Razzaque, S., Rea, I. C., Real, D., Riccobene, G., Robinson, J., Romanov, A., Ros, E., Šaina, A., Greus, F. Salesa, Samtleben, D. F. E., Losa, A. Sánchez, Sanfilippo, S., Sanguineti, M., Santonocito, D., Sapienza, P., Schnabel, J., Schumann, J., Schutte, H. M., Seneca, J., Sgura, I., Shanidze, R., Sharma, A., Shitov, Y., Šimkovic, F., Simonelli, A., Sinopoulou, A., Spisso, B., Spurio, M., Stavropoulos, D., Štekl, I., Stellacci, S. M., Taiuti, M., Tayalati, Y., Thiersen, H., Thoudam, S., Melo, I. Tosta e, Trocmé, B., Tsourapis, V., Tudorache, A., Tzamariudaki, E., Ukleja, A., Vacheret, A., Valsecchi, V., Van Elewyck, V., Vannoye, G., Vasileiadis, G., de Sola, F. Vazquez, Veutro, A., Viola, S., Vivolo, D., van Vliet, A., de Wolf, E., Yvon, I., Zavatarelli, S., Zegarelli, A., Zito, D., Zornoza, J. D., Zúñiga, J., and Zywucka, N.
- Subjects
High Energy Physics - Experiment - Abstract
KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-purity neutrino sample was extracted, corresponding to an exposure of 433 kton-years. The sample of 5828 neutrino candidates is analysed following a binned log-likelihood method in the reconstructed energy and cosine of the zenith angle. The atmospheric oscillation parameters are measured to be $\sin^2\theta_{23}= 0.51^{+0.04}_{-0.05}$, and $ \Delta m^2_{31} = 2.18^{+0.25}_{-0.35}\times 10^{-3}~\mathrm{eV^2} \cup \{-2.25,-1.76\}\times 10^{-3}~\mathrm{eV^2}$ at 68\% CL. The inverted neutrino mass ordering hypothesis is disfavoured with a p-value of 0.25., Comment: 29 pages, 12 figures
- Published
- 2024
37. Euclid: The Early Release Observations Lens Search Experiment
- Author
-
Barroso, J. A. Acevedo, O'Riordan, C. M., Clément, B., Tortora, C., Collett, T. E., Courbin, F., Gavazzi, R., Metcalf, R. B., Busillo, V., Andika, I. T., Cabanac, R., Courtois, H. M., Crook-Mansour, J., Delchambre, L., Despali, G., Ecker, L. R., Franco, A., Holloway, P., Jackson, N., Jahnke, K., Mahler, G., Marchetti, L., Matavulj, P., Melo, A., Meneghetti, M., Moustakas, L. A., Müller, O., Nucita, A. A., Paulino-Afonso, A., Pearson, J., Rojas, K., Scarlata, C., Schuldt, S., Serjeant, S., Sluse, D., Suyu, S. H., Vaccari, M., Verma, A., Vernardos, G., Walmsley, M., Bouy, H., Walth, G. L., Powell, D. M., Bolzonella, M., Cuillandre, J. -C., Kluge, M., Saifollahi, T., Schirmer, M., Stone, C., Acebron, A., Bazzanini, L., Díaz-Sánchez, A., Hogg, N. B., Koopmans, L. V. E., Kruk, S., Leuzzi, L., Manjón-García, A., Mannucci, F., Nagam, B. C., Pearce-Casey, R., Scharré, L., Wilde, J., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bender, R., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Candini, G. P., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zucca, E., Burigana, C., Scottez, V., and Viel, M.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the ability of the Euclid telescope to detect galaxy-scale gravitational lenses. To do so, we perform a systematic visual inspection of the $0.7\,\rm{deg}^2$ Euclid ERO data towards the Perseus cluster using both the high-resolution VIS $I_{\scriptscriptstyle\rm E}$ band, and the lower resolution NISP bands. We inspect every extended source brighter than magnitude $23$ in $I_{\scriptscriptstyle\rm E}$ with $41$ expert human classifiers. This amounts to $12\,086$ stamps of $10^{\prime\prime}\,\times\,10^{\prime\prime}$. We find $3$ grade A and $13$ grade B candidates. We assess the validity of these $16$ candidates by modelling them and checking that they are consistent with a single source lensed by a plausible mass distribution. Five of the candidates pass this check, five others are rejected by the modelling and six are inconclusive. Extrapolating from the five successfully modelled candidates, we infer that the full $14\,000\,{\rm deg}^2$ of the Euclid Wide Survey should contain $100\,000^{+70\,000}_{-30\,000}$ galaxy-galaxy lenses that are both discoverable through visual inspection and have valid lens models. This is consistent with theoretical forecasts of $170\,000$ discoverable galaxy-galaxy lenses in Euclid. Our five modelled lenses have Einstein radii in the range $0.\!\!^{\prime\prime}68\,<\,\theta_\mathrm{E}\,<1.\!\!^{\prime\prime}24$, but their Einstein radius distribution is on the higher side when compared to theoretical forecasts. This suggests that our methodology is likely missing small Einstein radius systems. Whilst it is implausible to visually inspect the full Euclid data set, our results corroborate the promise that Euclid will ultimately deliver a sample of around $10^5$ galaxy-scale lenses., Comment: 21 pages, 20 figures, submitted to A&A
- Published
- 2024
38. MPC-Minimized Secure LLM Inference
- Author
-
Rathee, Deevashwer, Li, Dacheng, Stoica, Ion, Zhang, Hao, and Popa, Raluca
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Many inference services based on large language models (LLMs) pose a privacy concern, either revealing user prompts to the service or the proprietary weights to the user. Secure inference offers a solution to this problem through secure multi-party computation (MPC), however, it is still impractical for modern LLM workload due to the large overhead imposed by MPC. To address this overhead, we propose Marill, a framework that adapts LLM fine-tuning to minimize MPC usage during secure inference. Marill introduces high-level architectural changes during fine-tuning that significantly reduce the number of expensive operations needed within MPC during inference, by removing some and relocating others outside MPC without compromising security. As a result, Marill-generated models are more efficient across all secure inference protocols and our approach complements MPC-friendly approximations for such operations. Compared to standard fine-tuning, Marill results in 3.6-11.3x better runtime and 2.4-6.9x better communication during secure inference across various MPC settings, while typically preserving over 90% performance across downstream tasks.
- Published
- 2024
39. Slow molecular beams from a cryogenic buffer gas source
- Author
-
White, A. D., Popa, S., Mellado-Munoz, J., Fitch, N. J., Sauer, B. E., Lim, J., and Tarbutt, M. R.
- Subjects
Physics - Atomic Physics - Abstract
We study the properties of a cryogenic buffer gas source that uses a low temperature two-stage buffer gas cell to produce very slow beams of ytterbium monofluoride molecules. The molecules are produced by laser ablation inside the cell and extracted into a beam by a flow of cold helium. We measure the flux and velocity distribution of the beam as a function of ablation energy, helium flow rate, cell temperature, and the size of the gap between the first and second stages of the cell. We also compare the velocity distributions from one-stage and two-stage cells. The one-stage cell emits a beam with a speed of about 82 m s$^{-1}$ and a translational temperature of 0.63 K. The slowest beams are obtained using the two-stage cell at the lowest achievable cell temperature of 1.8 K. This beam has a peak velocity of 56 m s$^{-1}$ and a flux of $9 \times 10^9$ ground state molecules per steradian per pulse, with a substantial fraction at speeds below 40 m s$^{-1}$. These slow molecules can be decelerated further by radiation pressure slowing and then captured in a magneto-optical trap., Comment: 9 pages, 7 figures
- Published
- 2024
40. Euclid and KiDS-1000: Quantifying the impact of source-lens clustering on cosmic shear analyses
- Author
-
Linke, L., Unruh, S., Wittje, A., Schrabback, T., Grandis, S., Asgari, M., Dvornik, A., Hildebrandt, H., Hoekstra, H., Joachimi, B., Reischke, R., Busch, J. L. van den, Wright, A. H., Schneider, P., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Sapone, D., Sartoris, B., Schirmer, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Pezzotta, A., Porciani, C., Scottez, V., Viel, M., and Brun, A. M. C. Le
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmic shear is a powerful probe of cosmological models and the transition from current Stage-III surveys like the Kilo-Degree Survey (KiDS) to the increased area and redshift range of Stage IV-surveys such as \Euclid will significantly increase the precision of weak lensing analyses. However, with increasing precision, the accuracy of model assumptions needs to be evaluated. In this study, we quantify the impact of the correlated clustering of weak lensing source galaxies with the surrounding large-scale structure, the so-called source-lens clustering (SLC), which is commonly neglected. We include the impact of realistic scatter in photometric redshift estimates, which impacts the assignment of galaxies to tomographic bins and increases the SLC. For this, we use simulated cosmological datasets with realistically distributed galaxies and measure shear correlation functions for both clustered and uniformly distributed source galaxies. Cosmological analyses are performed for both scenarios to quantify the impact of SLC on parameter inference for a KiDS-like and a \Euclid-like setting. We find for Stage III surveys like KiDS, SLC has a minor impact when accounting for nuisance parameters for intrinsic alignments and shifts of tomographic bins, as these nuisance parameters absorb the effect of SLC, thus changing their original meaning. For KiDS (\Euclid), the inferred intrinsic alignment amplitude $A_\mathrm{IA}$ changes from $0.11_{-0.46}^{+0.44}$ ($-0.009_{-0.080}^{+0.079}$) for data without SLC to $0.28_{-0.44}^{+0.42}$ ($0.022_{-0.082}^{+0.081}$) with SLC. However, fixed nuisance parameters lead to shifts in $S_8$ and $\Omega_\mathrm{m}$. For \Euclid we find that $S_8$ and $\Omega_\mathrm{m}$ are shifted by 0.14 and 0.12 $\sigma$, respectively, when including free nuisance parameters. Consequently, SLC on its own has only a small impact on the inferred parameters., Comment: 17 pages plus appendix, 10 figures, abstract abridged for arXiv
- Published
- 2024
41. The Future of QKD Networks
- Author
-
Popa, Alin-Bogdan and Popescu, Pantelimon George
- Subjects
Computer Science - Networking and Internet Architecture ,Computer Science - Cryptography and Security ,Quantum Physics - Abstract
With the recent advancements in quantum technologies, the QKD market exploded. World players are scrambling to win the race towards global QKD networks, even before the rules and policies required by such large endeavors were even discussed. Several vendors are on the market, each with specific parameters and advantages (in terms of key rate, link range, KMS software, etc.), hence considerable effort is now made towards standardization. While quantum communications is expected to reach a market size of up to \$36B by 2040, the largest QKD initiative to date is EuroQCI, which, due to its sheer scale, is forcing the market to mature. Although building a QKD network is believed to be trivial today, inter-connecting federated networks on a global scale is a heavy challenge. We propose QKD virtual networks not only as a useful infrastructure abstraction for increased flexibility and granular security, but as an inevitable solution for several problems that future QKD networks will encounter on the way towards widespread adoption.
- Published
- 2024
42. Constraints on the energy spectrum of the diffuse cosmic neutrino flux from the ANTARES neutrino telescope
- Author
-
ANTARES Collaboration, Albert, A., Alves, S., André, M., Ardid, M., Ardid, S., Aubert, J. -J., Aublin, J., Baret, B., Basa, S., Becherini, Y., Belhorma, B., Bendahman, M., Benfenati, F., Bertin, V., Biagi, S., Boumaaza, J., Bouta, M., Bouwhuis, M. C., Brânzaş, H., Bruijn, R., Brunner, J., Busto, J., Caiffi, B., Calvo, D., Campion, S., Capone, A., Carenini, F., Carr, J., Carretero, V., Cartraud, T., Celli, S., Cerisy, L., Chabab, M., Moursli, R. Cherkaoui El, Chiarusi, T., Circella, M., Coelho, J. A. B., Coleiro, A., Coniglione, R., Coyle, P., Creusot, A., Díaz, A. F., De Martino, B., Distefano, C., Di Palma, I., Donzaud, C., Dornic, D., Drouhin, D., Eberl, T., Eddymaoui, A., van Eeden, T., van Eijk, D., Hedri, S. El, Khayati, N. El, Enzenhöfer, A., Fermani, P., Ferrara, G., Filippini, F., Fusco, L. A., Gagliardini, S., García, J., Oliver, C. Gatius, Gay, P., Geißelbrecht, N., Glotin, H., Gozzini, R., Ruiz, R. Gracia, Graf, K., Guidi, C., Haegel, L., van Haren, H., Heijboer, A. J., Hello, Y., Hennig, L., Hernández-Rey, J. J., Hößl, J., Huang, F., Illuminati, G., Jisse-Jung, B., de Jong, M., de Jong, P., Kadler, M., Kalekin, O., Katz, U., Kouchner, A., Kreykenbohm, I., Kulikovskiy, V., Lahmann, R., Lamoureux, M., Lazo, A., Lefèvre, D., Leonora, E., Levi, G., Stum, S. Le, Loucatos, S., Manczak, J., Marcelin, M., Margiotta, A., Marinelli, A., Martínez-Mora, J. A., Migliozzi, P., Moussa, A., Muller, R., Navas, S., Nezri, E., Fearraigh, B. Ó, Oukacha, E., Păun, A., Păvălaş, G. E., Peña-Martínez, S., Perrin-Terrin, M., Piattelli, P., Poirè, C., Popa, V., Pradier, T., Randazzo, N., Real, D., Riccobene, G., Romanov, A., Losa, A. Sánchez, Saina, A., Greus, F. Salesa, Samtleben, D. F. E., Sanguineti, M., Sapienza, P., Schüssler, F., Seneca, J., Spurio, M., Stolarczyk, Th., Taiuti, M., Tayalati, Y., Vallage, B., Vannoye, G., Van Elewyck, V., Viola, S., Vivolo, D., Wilms, J., Zavatarelli, S., Zegarelli, A., Zornoza, J. D., and Zúñiga, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
High-significance evidences of the existence of a high-energy diffuse flux of cosmic neutrinos have emerged in the last decade from several observations by the IceCube Collaboration. The ANTARES neutrino telescope took data for 15 years in the Mediterranean Sea, from 2007 to 2022, and collected a high-purity all-flavour neutrino sample. The search for a diffuse cosmic neutrino signal using this dataset is presented in this article. This final analysis did not provide a statistically significant observation of the cosmic diffuse flux. However, this is converted into limits on the properties of the cosmic neutrino spectrum. In particular, given the sensitivity of the ANTARES neutrino telescope between 1 and 50 TeV, constraints on single-power-law hypotheses are derived for the cosmic diffuse flux below 20 TeV, especially for power-law fits of the IceCube data with spectral index softer than 2.8.
- Published
- 2024
- Full Text
- View/download PDF
43. XAMI -- A Benchmark Dataset for Artefact Detection in XMM-Newton Optical Images
- Author
-
Dima, Elisabeta-Iulia, Gómez, Pablo, Kruk, Sandor, Kretschmar, Peter, Rosen, Simon, and Popa, Călin-Adrian
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Astrophysics - Instrumentation and Methods for Astrophysics ,Computer Science - Machine Learning - Abstract
Reflected or scattered light produce artefacts in astronomical observations that can negatively impact the scientific study. Hence, automated detection of these artefacts is highly beneficial, especially with the increasing amounts of data gathered. Machine learning methods are well-suited to this problem, but currently there is a lack of annotated data to train such approaches to detect artefacts in astronomical observations. In this work, we present a dataset of images from the XMM-Newton space telescope Optical Monitoring camera showing different types of artefacts. We hand-annotated a sample of 1000 images with artefacts which we use to train automated ML methods. We further demonstrate techniques tailored for accurate detection and masking of artefacts using instance segmentation. We adopt a hybrid approach, combining knowledge from both convolutional neural networks (CNNs) and transformer-based models and use their advantages in segmentation. The presented method and dataset will advance artefact detection in astronomical observations by providing a reproducible baseline. All code and data are made available (https://github.com/ESA-Datalabs/XAMI-model and https://github.com/ESA-Datalabs/XAMI-dataset)., Comment: Accepted for oral presentation at SPAICE 2024
- Published
- 2024
44. MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation
- Author
-
Grigore, Ionuţ and Popa, Călin-Adrian
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
In the field of self-supervised depth estimation, Convolutional Neural Networks (CNNs) and Transformers have traditionally been dominant. However, both architectures struggle with efficiently handling long-range dependencies due to their local focus or computational demands. To overcome this limitation, we present MambaDepth, a versatile network tailored for self-supervised depth estimation. Drawing inspiration from the strengths of the Mamba architecture, renowned for its adept handling of lengthy sequences and its ability to capture global context efficiently through a State Space Model (SSM), we introduce MambaDepth. This innovative architecture combines the U-Net's effectiveness in self-supervised depth estimation with the advanced capabilities of Mamba. MambaDepth is structured around a purely Mamba-based encoder-decoder framework, incorporating skip connections to maintain spatial information at various levels of the network. This configuration promotes an extensive feature learning process, enabling the capture of fine details and broader contexts within depth maps. Furthermore, we have developed a novel integration technique within the Mamba blocks to facilitate uninterrupted connectivity and information flow between the encoder and decoder components, thereby improving depth accuracy. Comprehensive testing across the established KITTI dataset demonstrates MambaDepth's superiority over leading CNN and Transformer-based models in self-supervised depth estimation task, allowing it to achieve state-of-the-art performance. Moreover, MambaDepth proves its superior generalization capacities on other datasets such as Make3D and Cityscapes. MambaDepth's performance heralds a new era in effective long-range dependency modeling for self-supervised depth estimation.
- Published
- 2024
45. Du Bois complexes of cones over singular varieties, local cohomological dimension, and K-groups
- Author
-
Popa, Mihnea and Shen, Wanchun
- Subjects
Mathematics - Algebraic Geometry ,14B05, 14C30, 19E08 - Abstract
We compute the Du Bois complexes of abstract cones over singular varieties, and use this to describe the local cohomological dimension and the non-positive K-groups of such cones., Comment: 18 pages; for a volume in memory of Lucian Badescu
- Published
- 2024
46. COLOR CHANGE STUDY BY RETREATMENT WITH DIRECT DYES. STUDY CASE
- Author
-
PUSTIANU Monica, FOGORASI Magdalena, BARBU Ionel, AIRINEI Erzsebet, POPA Alexandru, and BUCEVSCHI Adina
- Subjects
retreatment ,color fastness ,direct dyes ,metal salts ,cationic salts ,Manufactures ,TS1-2301 - Abstract
In this paper we presented a study on the color change by retreatment with different agents, of materials dyed with direct dyes.Direct dyes are organic or inorganic substances that contain double-bonded chromophore groups, which have a major role in the affinity of dyes for cellulosic fibers. Direct dye fixation is done by: hydrogen bonds, van der Waals bonds, dipole forces between dye and fiber.The dyeing process is influenced by the following parameters: dye concentration, electrolyte concentration, temperature and bath hydromodule.Most direct dyes do not have adequate color fastness to wet or light treatments. Therefore, these color fastness need to be improved by various retreatment processes.In order to improve the color fastness to wet and light treatments, it is possible to change the structure of the dye by complexing (metal salt treatment), redoing by diazotization and coupling, insolubilization with cationic agents (cationic salts or synthetic resins). The optimal method of treatment is dictated by the structure of the dye and the advantages and disadvantages of each method.In this study, metal salts of CuSO4, K2Cr2O7 and cationic salts (Aniofix D) were used for the retreatment. Following these retreatments, varieties of tint and color variations of the dyeing colors appeared. Tint and color changes must be considered when making dyeing recipes.
- Published
- 2020
47. Euclid preparation. Observational expectations for redshift z<7 active galactic nuclei in the Euclid Wide and Deep surveys
- Author
-
Euclid Collaboration, Selwood, M., Fotopoulou, S., Bremer, M. N., Bisigello, L., Landt, H., Bañados, E., Zamorani, G., Shankar, F., Stern, D., Lusso, E., Spinoglio, L., Allevato, V., Ricci, F., Feltre, A., Mannucci, F., Salvato, M., Bowler, R. A. A., Mignoli, M., Vergani, D., La Franca, F., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holliman, M. S., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Rix, Hans-Walter, Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Scaramella, R., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Colodro-Conde, C., De Lucia, G., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., George, K., Gracia-Carpio, J., Martinelli, M., Mauri, N., Neissner, C., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Baccigalupi, C., Ballardini, M., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Chambers, K. C., Contarini, S., Contini, T., Cooray, A. R., Cucciati, O., Davini, S., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferrero, I., Finelli, F., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hall, A., Hildebrandt, H., Hjorth, J., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Nicastro, L., Walton, Nicholas A., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sánchez, A. G., Schneider, A., Sefusatti, E., Sereno, M., Simon, P., Mancini, A. Spurio, Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Verza, G., Weaver, J. R., and Zinchenko, I. A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We forecast the expected population of active galactic nuclei (AGN) observable in the Euclid Wide Survey (EWS) and Euclid Deep Survey (EDS). Starting from an X-ray luminosity function (XLF) we generate volume-limited samples of the AGN expected in the survey footprints. Each AGN is assigned an SED appropriate for its X-ray luminosity and redshift, with perturbations sampled from empirical distributions. The photometric detectability of each AGN is assessed via mock observation of the assigned SED. We estimate 40 million AGN will be detectable in at least one band in the EWS and 0.24 million in the EDS, corresponding to surface densities of 2.8$\times$10$^{3}$ deg$^{-2}$ and 4.7$\times$10$^{3}$ deg$^{-2}$. Employing colour selection criteria on our simulated data we select a sample of 4.8$\times$10$^{6}$ (331 deg$^{-2}$) AGN in the EWS and 1.7$\times$10$^{4}$ (346 deg$^{-2}$) in the EDS, amounting to 10% and 8% of the AGN detectable in the EWS and EDS. Including ancillary Rubin/LSST bands improves the completeness and purity of AGN selection. These data roughly double the total number of selected AGN to comprise 21% and 15% of the detectable AGN in the EWS and EDS. The total expected sample of colour-selected AGN contains 6.0$\times$10$^{6}$ (74%) unobscured AGN and 2.1$\times$10$^{6}$ (26%) obscured AGN, covering $0.02 \leq z \lesssim 5.2$ and $43 \leq \log_{10} (L_{bol} / erg s^{-1}) \leq 47$. With this simple colour selection, expected surface densities are already comparable to the yield of modern X-ray and mid-infrared surveys of similar area. The relative uncertainty on our expectation for detectable AGN is 6.7% for the EWS and 12.5% for the EDS, driven by the uncertainty of the XLF., Comment: 36 pages, 21 figures, submitted to A&A
- Published
- 2024
48. Euclid preparation. Detecting globular clusters in the Euclid survey
- Author
-
Euclid Collaboration, Voggel, K., Lançon, A., Saifollahi, T., Larsen, S. S., Cantiello, M., Rejkuba, M., Cuillandre, J. -C., Hudelot, P., Nucita, A. A., Urbano, M., Romelli, E., Raj, M. A., Schirmer, M., Tortora, C., Abdurro'uf, Annibali, F., Baes, M., Boldrini, P., Cabanac, R., Carollo, D., Conselice, C. J., Duc, P. -A., Ferguson, A. M. N., Hunt, L. K., Knapen, J. H., Lonare, P., Marleau, F. R., Poulain, M., Sánchez-Janssen, R., Sola, E., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carlberg, R. G., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kohley, R., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Scaramella, R., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Colodro-Conde, C., De Lucia, G., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., George, K., Gracia-Carpio, J., Liebing, P., Martinelli, M., Mauri, N., Neissner, C., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Borlaff, A. S., Bruton, S., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hall, A., Hildebrandt, H., Hjorth, J., Ilbert, O., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Walton, Nicholas A., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sefusatti, E., Sereno, M., Simon, P., Mancini, A. Spurio, Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., Zinchenko, I. A., Mamon, G. A., and Scott, D.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Extragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well EGCs will be detectable in images from the Euclid telescope, using both simulated pre-launch images and the first early-release observations of the Fornax galaxy cluster. The Euclid Wide Survey will provide high-spatial resolution VIS imaging in the broad IE band as well as near-infrared photometry (YE, JE, and HE). We estimate that the galaxies within 100 Mpc in the footprint of the Euclid survey host around 830 000 EGCs of which about 350 000 are within the survey's detection limits. For about half of these EGCs, three infrared colours will be available as well. For any galaxy within 50Mpc the brighter half of its GC luminosity function will be detectable by the Euclid Wide Survey. The detectability of EGCs is mainly driven by the residual surface brightness of their host galaxy. We find that an automated machine-learning EGC-classification method based on real Euclid data of the Fornax galaxy cluster provides an efficient method to generate high purity and high completeness GC candidate catalogues. We confirm that EGCs are spatially resolved compared to pure point sources in VIS images of Fornax. Our analysis of both simulated and first on-sky data show that Euclid will increase the number of GCs accessible with high-resolution imaging substantially compared to previous surveys, and will permit the study of GCs in the outskirts of their hosts. Euclid is unique in enabling systematic studies of EGCs in a spatially unbiased and homogeneous manner and is primed to improve our understanding of many understudied aspects of GC astrophysics., Comment: Submitted to A&A
- Published
- 2024
49. Euclid. V. The Flagship galaxy mock catalogue: a comprehensive simulation for the Euclid mission
- Author
-
Euclid Collaboration, Castander, F. J., Fosalba, P., Stadel, J., Potter, D., Carretero, J., Tallada-Crespí, P., Pozzetti, L., Bolzonella, M., Mamon, G. A., Blot, L., Hoffmann, K., Huertas-Company, M., Monaco, P., Gonzalez, E. J., De Lucia, G., Scarlata, C., Breton, M. -A., Linke, L., Viglione, C., Li, S. -S., Zhai, Z., Baghkhani, Z., Pardede, K., Neissner, C., Teyssier, R., Crocce, M., Tutusaus, I., Miller, L., Congedo, G., Biviano, A., Hirschmann, M., Pezzotta, A., Aussel, H., Hoekstra, H., Kitching, T., Percival, W. J., Guzzo, L., Mellier, Y., Oesch, P. A., Bowler, R. A. A., Bruton, S., Allevato, V., Gonzalez-Perez, V., Manera, M., Avila, S., Kovács, A., Aghanim, N., Altieri, B., Amara, A., Amendola, L., Andreon, S., Auricchio, N., Baldi, M., Balestra, A., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Granett, B. R., Grazian, A., Grupp, F., Haugan, S. V. H., Holliman, M. S., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kohley, R., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Lahav, O., Laureijs, R., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Masters, D. C., Maurogordato, S., McCracken, H. J., Medinaceli, E., Mei, S., Melchior, M., Meneghetti, M., Merlin, E., Meylan, G., Mohr, J. J., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Nichol, R. C., Niemi, S. -M., Padilla, C., Paech, K., Paltani, S., Pasian, F., Peacock, J. A., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rosset, C., Rossetti, E., Saglia, R., Sapone, D., Schirmer, M., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tsyganov, A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zerbi, F. M., Zoubian, J., Zucca, E., Baccigalupi, C., Bernardeau, F., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Casenove, P., Castignani, G., Colodro-Conde, C., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Finelli, F., Gracia-Carpio, J., Ilić, S., Liebing, P., Marcin, S., Martinelli, M., Matthew, S., Mauri, N., Pöntinen, M., Porciani, C., Sakr, Z., Scottez, V., Sefusatti, E., Steinwagner, J., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Aubourg, E., Balaguera-Antolinez, A., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Böhringer, H., Borgani, S., Bouvard, T., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Canas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Contini, T., Cooray, A. R., Costanzi, M., Cucciati, O., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ezziati, M., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gonzalez, A. H., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Holland, A. D., Ilbert, O., Joudaki, S., Jullo, E., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Migliaccio, M., Miluzio, M., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Nicastro, L., Walton, Nicholas A., Oguri, M., Patrizii, L., Popa, V., Pourtsidou, A., Reimberg, P., Risso, I., Rocci, P. -F., Rollins, R. P., Rusholme, B., Sahlén, M., Sánchez, A. G., Schaye, J., Schewtschenko, J. A., Schneider, A., Schultheis, M., Sereno, M., Shankar, F., Shulevski, A., Silvestri, A., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tanidis, K., Tao, C., Tessore, N., Testera, G., Tewes, M., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Vernizzi, F., Verza, G., Vielzeuf, P., Weaver, J. R., Zalesky, L., Dimauro, P., Duc, P. -A., Fang, Y., Ferguson, A. M. N., Gutierrez, C. M., Kova{č}ić, I., Kruk, S., Brun, A. M. C. Le, Montoro, A., Murray, C., Pagano, L., Paoletti, D., Sarpa, E., Viitanen, A., Martín-Fleitas, J., and Yung, L. Y. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure formation over more than 10 billion years primarily from the combination of weak gravitational lensing and galaxy clustering data. The breath of Euclid's data will also foster a wide variety of scientific analyses. The Flagship simulation was developed to provide a realistic approximation to the galaxies that will be observed by Euclid and used in its scientific analyses. We ran a state-of-the-art N-body simulation with four trillion particles, producing a lightcone on the fly. From the dark matter particles, we produced a catalogue of 16 billion haloes in one octant of the sky in the lightcone up to redshift z=3. We then populated these haloes with mock galaxies using a halo occupation distribution and abundance matching approach, calibrating the free parameters of the galaxy mock against observed correlations and other basic galaxy properties. Modelled galaxy properties include luminosity and flux in several bands, redshifts, positions and velocities, spectral energy distributions, shapes and sizes, stellar masses, star formation rates, metallicities, emission line fluxes, and lensing properties. We selected a final sample of 3.4 billion galaxies with a magnitude cut of H_E<26, where we are complete. We have performed a comprehensive set of validation tests to check the similarity to observational data and theoretical models. In particular, our catalogue is able to closely reproduce the main characteristics of the weak lensing and galaxy clustering samples to be used in the mission's main cosmological analysis. (abridged), Comment: Paper submitted as part of the A&A special issue `Euclid on Sky', which contains Euclid key reference papers and first results from the Euclid Early Release Observations
- Published
- 2024
50. Euclid. IV. The NISP Calibration Unit
- Author
-
Euclid Collaboration, Hormuth, F., Jahnke, K., Schirmer, M., Lee, C. G. -Y., Scott, T., Barbier, R., Ferriol, S., Gillard, W., Grupp, F., Holmes, R., Holmes, W., Kubik, B., Macias-Perez, J., Laurent, M., Marpaud, J., Marton, M., Medinaceli, E., Morgante, G., Toledo-Moreo, R., Trifoglio, M., Rix, Hans-Walter, Secroun, A., Seiffert, M., Stassi, P., Wachter, S., Gutierrez, C. M., Vescovi, C., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Battaglia, P., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, R., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Douspis, M., Dubath, F., Ducret, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Faustini, F., Fotopoulou, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillis, B., Giocoli, C., Grazian, A., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Hook, I., Hornstrup, A., Hudelot, P., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kohley, R., Kümmel, M., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., McCracken, H. J., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Mohr, J. J., Moresco, M., Morris, P. W., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paech, K., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Rusholme, B., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Sauvage, M., Schewtschenko, J. A., Schneider, P., Schrabback, T., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Smadja, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Tereno, I., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zerbi, F. M., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Gracia-Carpio, J., Kazandjian, M. V., Mauri, N., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Aubourg, E., Ballardini, M., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Borlaff, A. S., Borsato, E., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Casenove, P., Castro, T., Chambers, K. C., Charles, Y., Contarini, S., Cooray, A. R., Cucciati, O., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finelli, F., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Jacobson, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Laudisio, F., Legrand, L., Libet, G., Loureiro, A., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Miluzio, M., Moretti, C., Nadathur, S., Walton, Nicholas A., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Risso, I., Rocci, P. -F., Rollins, R. P., Sahlén, M., Scarlata, C., Schneider, A., Schultheis, M., Sereno, M., Shulevski, A., Silvestri, A., Simon, P., Mancini, A. Spurio, Stadel, J., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Zalesky, L., Archidiacono, M., Atrio-Barandela, F., Bouvard, T., Caro, F., Dimauro, P., Fang, Y., Ferguson, A. M. N., Finoguenov, A., Gasparetto, T., Brun, A. M. C. Le, Graet, J. Le, Liaudat, T. I., Montoro, A., Murray, C., Oguri, M., Pagano, L., Paoletti, D., Sarpa, E., Tanidis, K., Vernizzi, F., Viitanen, A., Kova{č}ić, I., Lesgourgues, J., Martín-Fleitas, J., and Mora, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The near-infrared calibration unit (NI-CU) on board Euclid's Near-Infrared Spectrometer and Photometer (NISP) is the first astronomical calibration lamp based on light-emitting diodes (LEDs) to be operated in space. Euclid is a mission in ESA's Cosmic Vision 2015-2025 framework, to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5% accuracy in a survey homogeneously mapping ~14000 deg^2 of extragalactic sky requires a very detailed characterisation of near-infrared (NIR) detector properties, as well their constant monitoring in flight. To cover two of the main contributions - relative pixel-to-pixel sensitivity and non-linearity characteristics - as well as support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous (<12% variations) and temporally stable illumination (0.1%-0.2% over 1200s) over the NISP detector plane, with minimal power consumption and energy dissipation. NI-CU is covers the spectral range ~[900,1900] nm - at cryo-operating temperature - at 5 fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of >=100 from ~15 ph s^-1 pixel^-1 to >1500 ph s^-1 pixel^-1. For this functionality, NI-CU is based on LEDs. We describe the rationale behind the decision and design process, describe the challenges in sourcing the right LEDs, as well as the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities and performance as well as its limits. NI-CU has been integrated into NISP and the Euclid satellite, and since Euclid's launch in July 2023 has started supporting survey operations., Comment: Paper accepted for publication in A&A as part of the special issue 'Euclid on Sky', which contains Euclid key reference papers and first results from the Euclid Early Release Observations
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.