1. Isolation of phosphorus-hyperaccumulating microalgae from revolving algal biofilm (RAB) wastewater treatment systems
- Author
-
Eric Schaedig, Michael Cantrell, Chris Urban, Xuefei Zhao, Drew Greene, Jens Dancer, Michael Gross, Jacob Sebesta, Katherine J. Chou, Jonathan Grabowy, Martin Gross, Kuldip Kumar, and Jianping Yu
- Subjects
microalgae ,algae ,phosphorus ,polyphosphate ,wastewater ,revolving algal biofilm ,Microbiology ,QR1-502 - Abstract
Excess phosphorus (P) in wastewater effluent poses a serious threat to aquatic ecosystems and can spur harmful algal blooms. Revolving algal biofilm (RAB) systems are an emerging technology to recover P from wastewater before discharge into aquatic ecosystems. In RAB systems, a community of microalgae take up and store wastewater P as polyphosphate as they grow in a partially submerged revolving biofilm, which may then be harvested and dried for use as fertilizer in lieu of mined phosphate rock. In this work, we isolated and characterized a total of 101 microalgae strains from active RAB systems across the US Midwest, including 82 green algae, 9 diatoms, and 10 cyanobacteria. Strains were identified by microscopy and 16S/18S ribosomal DNA sequencing, cryopreserved, and screened for elevated P content (as polyphosphate). Seven isolated strains possessed at least 50% more polyphosphate by cell dry weight than a microalgae consortium from a RAB system, with the top strain accumulating nearly threefold more polyphosphate. These top P-hyperaccumulating strains include the green alga Chlamydomonas pulvinata TCF-48 g and the diatoms Eolimna minima TCF-3d and Craticula molestiformis TCF-8d, possessing 11.4, 12.7, and 14.0% polyphosphate by cell dry weight, respectively. As a preliminary test of strain application for recovering P, Chlamydomonas pulvinata TCF-48 g was reinoculated into a bench-scale RAB system containing Bold basal medium. The strain successfully recolonized the system and recovered twofold more P from the medium than a microalgae consortium from a RAB system treating municipal wastewater. These isolated P-hyperaccumulating microalgae may have broad applications in resource recovery from various waste streams, including improving P removal from wastewater.
- Published
- 2023
- Full Text
- View/download PDF