1. Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints
- Author
-
Chen, Bingzhi, Zhou, Haoming, Liu, Yishu, Zeng, Biqing, Pan, Jiahui, and Lu, Guangming
- Subjects
Computer Science - Multimedia - Abstract
Most recent few-shot learning approaches are based on meta-learning with episodic training. However, prior studies encounter two crucial problems: (1) \textit{the presence of inductive bias}, and (2) \textit{the occurrence of catastrophic forgetting}. In this paper, we propose a novel Multi-Level Contrastive Constraints (MLCC) framework, that jointly integrates within-episode learning and across-episode learning into a unified interactive learning paradigm to solve these issues. Specifically, we employ a space-aware interaction modeling scheme to explore the correct inductive paradigms for each class between within-episode similarity/dis-similarity distributions. Additionally, with the aim of better utilizing former prior knowledge, a cross-stage distribution adaption strategy is designed to align the across-episode distributions from different time stages, thus reducing the semantic gap between existing and past prediction distribution. Extensive experiments on multiple few-shot datasets demonstrate the consistent superiority of MLCC approach over the existing state-of-the-art baselines.
- Published
- 2024