902 results on '"Armstrong, R. P."'
Search Results
2. 21 new long-term variables in the GX 339-4 field: two years of MeerKAT monitoring
- Author
-
Driessen, L. N., Stappers, B. W., Tremou, E., Fender, R. P., Woudt, P. A., Armstrong, R., Bloemen, S., Groot, P., Heywood, I., Horesh, A., van der Horst, A. J., Koerding, E., McBride, V. A., Miller-Jones, J. C. A., Mooley, K. P., Rowlinson, A., and Wijers, R. A. M. J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
We present 21 new long-term variable radio sources found commensally in two years of weekly MeerKAT monitoring of the low-mass X-ray binary GX 339-4. The new sources vary on time scales of weeks to months and have a variety of light curve shapes and spectral index properties. Three of the new variable sources are coincident with multi-wavelength counterparts; and one of these is coincident with an optical source in deep MeerLICHT images. For most sources, we cannot eliminate refractive scintillation of active galactic nuclei as the cause of the variability. These new variable sources represent $2.2\pm0.5$ per cent of the unresolved sources in the field, which is consistent with the 1-2 per cent variability found in past radio variability surveys. However, we expect to find short-term variable sources in the field as well as these 21 new long-term variable sources. We present the radio light curves and spectral index variability of the new variable sources, as well as the absolute astrometry and matches to coincident sources at other wavelengths., Comment: 26 pages, 17 figures, 7 tables. Accepted for publication in MNRAS 2022 March 14. Received 2022 February 17; in original form 2021 July 11
- Published
- 2022
- Full Text
- View/download PDF
3. A MeerKAT Survey of Nearby Novalike Cataclysmic Variables
- Author
-
Hewitt, D. M., Pretorius, M. L., Woudt, P. A., Tremou, E., Miller-Jones, J. C. A., Knigge, C., Segura, N. Castro, Williams, D. R. A., Fender, R. P., Armstrong, R., Groot, P., Heywood, I., Horesh, A., van der Horst, A. J., Koerding, E., McBride, V. A., Mooley, K. P., Rowlinson, A., Stappers, B., and Wijers, R. A. M. J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of MeerKAT radio observations of eleven nearby novalike cataclysmic variables. We have detected radio emission from IM Eri, RW Sex, V3885 Sgr and V603 Aql. While RW Sex, V3885 Sgr and V603 Aql had been previously detected, this is the first reported radio detection of IM Eri. Our observations have doubled the sample of non-magnetic CVs with sensitive radio data. We observe that at our radio detection limits, a specific optical luminosity $\gtrsim 2.2\times 10^{18}$ erg/s/Hz (corresponding to $M_V \lesssim 6.0$) is required to produce a radio detection. We also observe that the X-ray and radio luminosities of our detected novalikes are on an extension of the $L_{X} \propto L_{R}^{\sim 0.7}$ power law originally proposed for non-pulsating neutron star low-mass X-ray binaries. We find no other correlations between the radio emission and emission in other wavebands or any other system parameters for the existing sample of radio-detected non-magnetic CVs. We measure in-band (0.9-1.7 GHz) radio spectral indices that are consistent with reports from earlier work. Finally, we constructed broad spectral energy distributions for our sample from published multi-wavelength data, and use them to place constraints on the mass transfer rates of these systems., Comment: 16 pages, 9 figures, accepted to MNRAS
- Published
- 2020
- Full Text
- View/download PDF
4. An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070
- Author
-
Bright, J. S., Fender, R. P., Motta, S. E., Williams, D. R. A., Moldon, J., Plotkin, R. M., Miller-Jones, J. C. A., Heywood, I., Tremou, E., Beswick, R., Sivakoff, G. R., Corbel, S., Buckley, D. A. H., Homan, J., Gallo, E., Tetarenko, A. J., Russell, T. D., Green, D. A., Titterington, D., Woudt, P. A., Armstrong, R. P., Groot, P. J., Horesh, A., van der Horst, A. J., Körding, E. G., McBride, V. A., Rowlinson, A., and Wijers, R. A. M. J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Black holes in binary systems execute patterns of outburst activity where two characteristic X-ray states are associated with different behaviours observed at radio wavelengths. The hard state is associated with radio emission indicative of a continuously replenished, collimated, relativistic jet, whereas the soft state is rarely associated with radio emission, and never continuously, implying the absence of a quasi-steady jet. Here we report radio observations of the black hole transient MAXI J1820$+$070 during its 2018 outburst. As the black hole transitioned from the hard to soft state we observed an isolated radio flare, which, using high angular resolution radio observations, we connect with the launch of bi-polar relativistic ejecta. This flare occurs as the radio emission of the core jet is suppressed by a factor of over 800. We monitor the evolution of the ejecta over 200 days and to a maximum separation of 10$''$, during which period it remains detectable due to in-situ particle acceleration. Using simultaneous radio observations sensitive to different angular scales we calculate an accurate estimate of energy content of the approaching ejection. This energy estimate is far larger than that derived from state transition radio flare, suggesting a systematic underestimate of jet energetics., Comment: 57 pages, 8 figures, published in Nature Astronomy
- Published
- 2020
- Full Text
- View/download PDF
5. Radio & X-ray detections of GX 339--4 in quiescence using MeerKAT and Swift
- Author
-
Tremou, E., Corbel, S., Fender, R. P., Woudt, P. A., Miller-Jones, J. C. A., Motta, S. E., Heywood, I., Armstrong, R. P., Groot, P., Horesh, A., van der Horst, A. J., Koerding, E., Mooley, K. P., Rowlinson, A., and Wijers, R. A. M. J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The radio:X-ray correlation that characterises accreting black holes at all mass scales - from stellar mass black holes in binary systems to super-massive black holes powering Active Galactic Nuclei - is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows - or jets - in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary GX 339--4 in quiescence using the MeerKAT radio telescope and Swift X-ray Telescope instrument onboard the Neil Gehrels Swift Observatory, probing the lower end of the radio:X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system., Comment: 5 pages, 2 figure, accepted to MNRAS
- Published
- 2020
- Full Text
- View/download PDF
6. Formal verification and validation of run-to-completion style state charts using Event-B
- Author
-
Morris, K., Snook, C., Hoang, T. S., Hulette, G., Armstrong, R., and Butler, M.
- Published
- 2022
- Full Text
- View/download PDF
7. MKT J170456.2-482100: the first transient discovered by MeerKAT
- Author
-
Driessen, L. N., McDonald, I., Buckley, D. A. H., Caleb, M., Kotze, E. J., Potter, S. B., Rajwade, K . M., Rowlinson, A., Stappers, B. W., Tremou, E., Woudt, P. A., Fender, R. P., Armstrong, R., Groot, P., Heywood, I., Horesh, A., van der Horst, A. J., Koerding, E., McBride, V. A., Miller-Jones, J. C. A., Mooley, K. P., and Wijers, R. A. M. J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report the discovery of the first transient with MeerKAT, MKT J170456.2$-$482100, discovered in ThunderKAT images of the low mass X-ray binary GX339$-$4. MKT J170456.2$-$482100 is variable in the radio, reaching a maximum flux density of $0.71\pm0.11\,\mathrm{mJy}$ on 2019 Oct 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2$-$482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and $\sim18\,\mathrm{years}$ of archival optical photometry of the star shows that it varies with a period of $21.25\pm0.04\,\mathrm{days}$. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2$-$482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of $43\,\mathrm{km\,s^{-1}}$. We also observe a spectral feature in anti-phase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of $\sim12\pm10\,\mathrm{km\,s^{-1}}$, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2$-$482100 system., Comment: 16 pages, 12 figures, 7 tables
- Published
- 2019
- Full Text
- View/download PDF
8. Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data
- Author
-
Hamana, T., Shirasaki, M., Miyazaki, S., Hikage, C., Oguri, M., More, S., Armstrong, R., Leauthaud, A., Mandelbaum, R., Miyatake, H., Nishizawa, A. J., Simet, M., Takada, M., Aihara, H., Bosch, J., Komiyama, Y., Lupton, R., Murayama, H., Strauss, M. A., and Tanaka, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) first-year data, and derived cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $\Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and 2.4 arcmin$^{-2}$ from lower to higher redshifts, respectively. We adopt the standard TPCF estimators, $\xi_\pm$, for our cosmological analysis, given that we find no evidence of the significant B-mode shear. The TPCFs are detected at high significance for all ten combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7'<\theta<56'$ for $\xi_+$ and $28'<\theta<178'$ for $\xi_-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $\Lambda$ cold dark matter model, we find $S_8 \equiv \sigma_8\sqrt{\Omega_m/0.3}=0.823_{-0.028}^{+0.032}$, and $\Omega_m=0.332_{-0.096}^{+0.050}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints., Comment: Replaced with the bug-fixed version. The results presented in the original publication were found to be affected by bugs in the software used for the numerical computation. The erratum will be published in PASJ. In this version, revised results obtained from corrected computations are presented. Revised chains are available from http://th.nao.ac.jp/MEMBER/hamanatk/HSC16aCSTPCFbugfix/index.html
- Published
- 2019
- Full Text
- View/download PDF
9. The Dark Energy Survey Image Processing Pipeline
- Author
-
Morganson, E., Gruendl, R. A., Menanteau, F., Kind, M. Carrasco, Chen, Y. -C., Daues, G., Drlica-Wagner, A., Friedel, D. N., Gower, M., Johnson, M. W. G., Johnson, M. D., Kessler, R., Paz-Chinchón, F., Petravick, D., Pond, C., Yanny, B., Allam, S., Armstrong, R., Barkhouse, W., Bechtol, K., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Buckley-Geer, E., Covarrubias, R., Desai, S., Diehl, H. T., Goldstein, D. A., Gruen, D., Li, T. S., Lin, H., Marriner, J., Mohr, J. J., Neilsen, E., Ngeow, C. -C., Paech, K., Rykoff, E. S., Sako, M., Sevilla-Noarbe, I., Sheldon, E., Sobreira, F., Tucker, D. L., and Wester, W.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a 5000 square degree survey of the southern sky in five optical bands (g,r,i,z,Y) to a depth of ~24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g,r,i,z) over 27 square degrees. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On a bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.
- Published
- 2018
- Full Text
- View/download PDF
10. Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from Polarbear and Cosmic Shear from Subaru Hyper Suprime-Cam
- Author
-
Namikawa, T, Chinone, Y, Miyatake, H, Oguri, M, Takahashi, R, Kusaka, A, Katayama, N, Adachi, S, Aguilar, M, Aihara, H, Ali, A, Armstrong, R, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Cheung, K, Corbett, L, Crowley, KT, Bouhargani, H El, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Galitzki, N, Goeckner-Wald, N, Groh, J, Hamada, T, Hasegawa, M, Hazumi, M, Hill, CA, Howe, L, Jeong, O, Kaneko, D, Keating, B, Lee, AT, Leon, D, Linder, E, Lowry, LN, Mangu, A, Matsuda, F, Minami, Y, Miyazaki, S, Murayama, H, Navaroli, M, Nishino, H, Nishizawa, AJ, Pham, ATP, Poletti, D, Puglisi, G, Reichardt, CL, Sherwin, BD, Silva-Feaver, M, Siritanasak, P, Speagle, JS, Stompor, R, Suzuki, A, Tait, PJ, Tajima, O, Takada, M, Takakura, S, Takatori, S, Tanabe, D, Tanaka, M, Teply, GP, Tsai, C, Vergés, C, Westbrook, B, and Zhou, Y
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmic background radiation ,cosmology: observations ,gravitational lensing: weak ,polarization ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We present the first measurement of cross-correlation between the lensing potential, reconstructed from cosmic microwave background (CMB) polarization data, and the cosmic shear field from galaxy shapes. This measurement is made using data from the Polarbear CMB experiment and the Subaru Hyper Suprime-Cam (HSC) survey. By analyzing an 11 deg2 overlapping region, we reject the null hypothesis at 3.5σ and constrain the amplitude of the cross-spectrum to , where is the amplitude normalized with respect to the Planck 2018 prediction, based on the flat Λ cold dark matter cosmology. The first measurement of this cross-spectrum without relying on CMB temperature measurements is possible owing to the deep Polarbear map with a noise level of ∼6 μK arcmin, as well as the deep HSC data with a high galaxy number density of . We present a detailed study of the systematics budget to show that residual systematics in our results are negligibly small, which demonstrates the future potential of this cross-correlation technique.
- Published
- 2019
11. LSST: From Science Drivers to Reference Design and Anticipated Data Products
- Author
-
Ivezić, Ž, Kahn, SM, Tyson, JA, Abel, B, Acosta, E, Allsman, R, Alonso, D, Alsayyad, Y, Anderson, SF, Andrew, J, Angel, JRP, Angeli, GZ, Ansari, R, Antilogus, P, Araujo, C, Armstrong, R, Arndt, KT, Astier, P, Aubourg, E, Auza, N, Axelrod, TS, Bard, DJ, Barr, JD, Barrau, A, Bartlett, JG, Bauer, AE, Bauman, BJ, Baumont, S, Bechtol, E, Bechtol, K, Becker, AC, Becla, J, Beldica, C, Bellavia, S, Bianco, FB, Biswas, R, Blanc, G, Blazek, J, Blandford, RD, Bloom, JS, Bogart, J, Bond, TW, Booth, MT, Borgland, AW, Borne, K, Bosch, JF, Boutigny, D, Brackett, CA, Bradshaw, A, Brandt, WN, Brown, ME, Bullock, JS, Burchat, P, Burke, DL, Cagnoli, G, Calabrese, D, Callahan, S, Callen, AL, Carlin, JL, Carlson, EL, Chandrasekharan, S, Charles-Emerson, G, Chesley, S, Cheu, EC, Chiang, HF, Chiang, J, Chirino, C, Chow, D, Ciardi, DR, Claver, CF, Cohen-Tanugi, J, Cockrum, JJ, Coles, R, Connolly, AJ, Cook, KH, Cooray, A, Covey, KR, Cribbs, C, Cui, W, Cutri, R, Daly, PN, Daniel, SF, Daruich, F, Daubard, G, Daues, G, Dawson, W, Delgado, F, Dellapenna, A, Peyster, RD, Val-Borro, MD, Digel, SW, Doherty, P, Dubois, R, Dubois-Felsmann, GP, Durech, J, Economou, F, Eifler, T, Eracleous, M, Emmons, BL, and Neto, AF
- Subjects
astrometry ,cosmology: observations ,Galaxy: general ,methods: observational ,stars: general ,surveys ,astro-ph ,Astronomical and Space Sciences ,Organic Chemistry ,Physical Chemistry ,Astronomy & Astrophysics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) - Abstract
We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachón in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg 2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320-1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg 2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ∼27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.
- Published
- 2019
12. Determining concentric and eccentric force–velocity profiles during squatting
- Author
-
Armstrong, R., Baltzopoulos, V., Langan-Evans, C., Clark, D., Jarvis, J., Stewart, C., and O’Brien, T. D.
- Published
- 2022
- Full Text
- View/download PDF
13. ThunderKAT: The MeerKAT Large Survey Project for Image-Plane Radio Transients
- Author
-
Fender, R., Woudt, P. A., Armstrong, R., Groot, P., McBride, V., Miller-Jones, J., Mooley, K., Stappers, B., Wijers, R., Bietenholz, M., Blyth, S., Bottcher, M., Buckley, D., Charles, P., Chomiuk, L., Coppejans, D., Corbel, S., Coriat, M., Daigne, F., de Blok, W. J. G., Falcke, H., Girard, J., Heywood, I., Horesh, A., Horrell, J., Jonker, P., Joseph, T., Kamble, A., Knigge, C., Koerding, E., Kotze, M., Kouveliotou, C., Lynch, C., Maccarone, T., Meintjes, P., Migliari, S., Murphy, T., Nagayama, T., Nelemans, G., Nicholson, G., O'Brien, T., Oodendaal, A., Oozeer, N., Osborne, J., Perez-Torres, M., Ratcliffe, S., Ribeiro, V., Rol, E., Rushton, A., Scaife, A., Schurch, M., Sivakoff, G., Staley, T., Steeghs, D., Stewart, I., Swinbank, J., van der Heyden, K., van der Horst, A., van Soelen, B., Vergani, S., Warner, B., and Wiersema, K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
ThunderKAT is the image-plane transients programme for MeerKAT. The goal as outlined in 2010, and still today, is to find, identify and understand high-energy astrophysical processes via their radio emission (often in concert with observations at other wavelengths). Through a comprehensive and complementary programme of surveying and monitoring Galactic synchrotron transients (across a range of compact accretors and a range of other explosive phenomena) and exploring distinct populations of extragalactic synchrotron transients (microquasars, supernovae and possibly yet unknown transient phenomena) - both from direct surveys and commensal observations - we will revolutionise our understanding of the dynamic and explosive transient radio sky. As well as performing targeted programmes of our own, we have made agreements with the other MeerKAT large survey projects (LSPs) that we will also search their data for transients. This commensal use of the other surveys, which remains one of our key programme goals in 2016, means that the combined MeerKAT LSPs will produce by far the largest GHz-frequency radio transient programme to date., Comment: To be published in "MeerKAT Science: On the Pathway to the SKA". Proceedings of Science. Workshop held 25-27 May, 2016 Stellenbosch, South Africa
- Published
- 2017
14. Photometric characterization of the Dark Energy Camera
- Author
-
Bernstein, G. M., Abbott, T. M. C., Armstrong, R., Burke, D. L., Diehl, H. T., Gruendl, R. A., Johnson, M. D., Li, T. S., Rykoff, E. S., Walker, A. R., Wester, W., and Yanny, B.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $\ge20$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $\pm7$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy., Comment: Submitted to PASP
- Published
- 2017
- Full Text
- View/download PDF
15. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
- Author
-
Aihara, H., Arimoto, N., Armstrong, R., Arnouts, S., Bahcall, N. A., Bickerton, S., Bosch, J., Bundy, K., Capak, P. L., Chan, J. H. H., Chiba, M., Coupon, J., Egami, E., Enoki, M., Finet, F., Fujimori, H., Fujimoto, S., Furusawa, H., Furusawa, J., Goto, T., Goulding, A., Greco, J. P., Greene, J. E., Gunn, J. E., Hamana, T., Harikane, Y., Hashimoto, Y., Hattori, T., Hayashi, M., Hayashi, Y., Hełminiak, K. G., Higuchi, R., Hikage, C., Ho, P. T. P., Hsieh, B. -C., Huang, K., Huang, S., Ikeda, H., Imanishi, M., Inoue, A. K., Iwasawa, K., Iwata, I., Jaelani, A. T., Jian, H. -Y., Kamata, Y., Karoji, H., Kashikawa, N., Katayama, N., Kawanomoto, S., Kayo, I., Koda, J., Koike, M., Kojima, T., Komiyama, Y., Konno, A., Koshida, S., Koyama, Y., Kusakabe, H., Leauthaud, A., Lee, C. -H., Lin, L., Lin, Y. -T., Lupton, R. H., Mandelbaum, R., Matsuoka, Y., Medezinski, E., Mineo, S., Miyama, S., Miyatake, H., Miyazaki, S., Momose, R., More, A., More, S., Moritani, Y., Moriya, T. J., Morokuma, T., Mukae, S., Murata, R., Murayama, H., Nagao, T., Nakata, F., Niida, M., Niikura, H., Nishizawa, A. J., Obuchi, Y., Oguri, M., Oishi, Y., Okabe, N., Okura, Y., Ono, Y., Onodera, M., Onoue, M., Osato, K., Ouchi, M., Price, P. A., Pyo, T. -S., Sako, M., Okamoto, S., Sawicki, M., Shibuya, T., Shimasaku, K., Shimono, A., Shirasaki, M., Silverman, J. D., Simet, M., Speagle, J., Spergel, D. N., Strauss, M. A., Sugahara, Y., Sugiyama, N., Suto, Y., Suyu, S. H., Suzuki, N., Tait, P. J., Takata, T., Takada, M., Tamura, N., Tanaka, M. M., Tanaka, M., Tanaka, Y., Terai, T., Terashima, Y., Toba, Y., Toshikawa, J., Turner, E. L., Uchida, T., Uchiyama, H., Umetsu, K., Uraguchi, F., Urata, Y., Usuda, T., Utsumi, Y., Wang, S. -Y., Wang, W. -H., Wong, K. C., Yabe, K., Yamada, Y., Yamanoi, H., Yasuda, N., Yeh, S., Yonehara, A., and Yuma, S.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg$^2$ in five broad bands ($grizy$), with a $5\,\sigma$ point-source depth of $r \approx 26$. The Deep layer covers a total of 26~deg$^2$ in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg$^2$). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey., Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table 5
- Published
- 2017
- Full Text
- View/download PDF
16. Astrometric calibration and performance of the Dark Energy Camera
- Author
-
Bernstein, G. M., Armstrong, R., Plazas, A. A., Walker, A. R., Abbott, T. M. C., Allam, S., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Eifler, T. F., Fernandez, E., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Ogando, R. L. C., Reil, K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., and Tarle, G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and across 4 years of operation. This is done using internal comparisons of ~4x10^7 measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to ~10 um when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for 30 s exposures) with 1 arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane, plus the stochastic atmospheric distortion., Comment: Submitted to PASP
- Published
- 2017
- Full Text
- View/download PDF
17. Nano-Indentation Hardness and Strain Hardening of Silicon, Sodium Chloride and Tungsten Crystals
- Author
-
Armstrong, R. W., Elban, W. L., and Walley, S. M.
- Published
- 2022
- Full Text
- View/download PDF
18. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data
- Author
-
MacCrann, N., Aleksić, J., Amara, A., Bridle, S. L., Bruderer, C., Chang, C., Dodelson, S., Eifler, T. F., Huff, E. M., Huterer, D., Kacprzak, T., Refregier, A., Suchyta, E., Wechsler, R. H., Zuntz, J., Abbott, T. M. C., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., Cunha, C. E., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Jarvis, M., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Rykoff, E. S., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Sheldon, E., Soares-Santos, M., Swanson, M. E. C., Tarle, G., Thomas, D., and Vikram, V.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback., Comment: 14 pages, 10 figures
- Published
- 2016
- Full Text
- View/download PDF
19. A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226
- Author
-
Cowperthwaite, P. S., Berger, E., Soares-Santos, M., Annis, J., Brout, D., Brown, D. A., Buckley-Geer, E., Cenko, S. B., Chen, H. Y., Chornock, R., Diehl, H. T., Doctor, Z., Drlica-Wagner, A., Drout, M. R., Farr, B., Finley, D. A., Foley, R. J., Fong, W., Fox, D. B., Frieman, J., Garcia-Bellido, J., Gill, M. S. S., Gruendl, R. A., Herner, K., Holz, D. E., Kasen, D., Kessler, R., Lin, H., Margutti, R., Marriner, J., Matheson, T., Metzger, B. D., Neilsen Jr., E. H., Quataert, E., Rest, A., Sako, M., Scolnic, D., Smith, N., Sobreira, F., Strampelli, G. M., Villar, V. A., Walker, A. R., Wester, W., Williams, P. K. G., Yanny, B., Abbott, T. M. C., Abdalla, F. B., Allam, S., Armstrong, R., Bechtol, K., Benoit-Levy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Evrard, A. E., Neto, A. Fausti, Fosalba, P., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruen, D., Gutierrez, G., Honscheid, K., James, D. J., Johnson, M. W. G., Johnson, M. D., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, R. C., Suchyta, E., Tarle, G., Thomas, D., Thomas, R. C., Tucker, D. L., and Weller, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the results of a Dark Energy Camera (DECam) optical follow-up of the gravitational wave (GW) event GW151226, discovered by the Advanced LIGO detectors. Our observations cover 28.8 deg$^2$ of the localization region in the $i$ and $z$ bands (containing 3% of the BAYESTAR localization probability), starting 10 hours after the event was announced and spanning four epochs at $2-24$ days after the GW detection. We achieve $5\sigma$ point-source limiting magnitudes of $i\approx21.7$ and $z\approx21.5$, with a scatter of $0.4$ mag, in our difference images. Given the two day delay, we search this area for a rapidly declining optical counterpart with $\gtrsim 3\sigma$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged AGN. The fourth source is offset by $5.8$ arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by $0.5$ mag over $4$ days, and has a red color of $i-z\approx 0.3$ mag. These properties roughly match the expectations for a kilonova. However, this source was detected several times, starting $94$ days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations., Comment: 7 Pages, 2 Figures, 1 Table. Accepted to ApJL, updated to better match published version
- Published
- 2016
- Full Text
- View/download PDF
20. Engineering and Science Highlights of the KAT-7 Radio Telescope
- Author
-
Foley, A. R., Alberts, T., Armstrong, R P., Barta, A., Bauermeister, E. F., Bester, H., Blose, S., Booth, R. S., Botha, D. H., Buchner, S. J., Carignan, C., Cheetham, T., Cloete, K., Coreejes, G., Crida, R. C., Cross, S. D., Curtolo, F., Dikgale, A., de Villiers, M. S., Toit, L. J. du, Esterhuyse, S. W. P., Fanaroff, B., Fender, R. P., Fijalkowski, M., Fourie, D., Frank, B., George, D., Gibbs, P., Goedhart, S., Grobbelaar, J., Gumede, S. C., Herselman, P., Hess, K. M., Hoek, N., Horrell, J., Jonas, J. L., Jordaan, J. D. B., Julie, R., Kapp, F., Kotzé, P., Kusel, T., Langman, A., Lehmensiek, R., Liebenberg, D., Liebenberg, I. J. V., Loots, A., Lord, R. T., Lucero, D. M., Ludick, J., Macfarlane, P., Madlavana, M., Magnus, L., Magozore, C., Malan, J. A., Manley, J. R., Marais, L., Marais, N., Marais, S. J., Maree, M., Martens, A., Mokone, O., Moss, V., Mthembu, S., New, W., Nicholson, G. D., van Niekerk, P. C., Oozeer, N., Passmoor, S. S., Peens-Hough, A., Pińska, A. B., Prozesky, P., Rajan, S., Ratcliffe, S., Renil, R., Richter, L. L., Rosekrans, D., Rust, A., Schröder, A. C., Schwardt, L. C., Seranyane, S., Serylak, M., Shepherd, D. S., Siebrits, R., Sofeya, L., Spann, R., Springbok, R., Swart, P. S., Thondikulam, Venkatasubramani L., Theron, I. P., Tiplady, A., Toruvanda, O., Tshongweni, S., Heever, L. van den, van der Merwe, C., van Rooyen, R., Wakhaba, S., Walker, A. L., Welz, M., Williams, L., Wolleben, M., Woudt, P. A., Young, N. J., and Zwart, J. T. L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The construction of the KAT-7 array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scien- tific highlights from this effort, and discusses their applicability to both MeerKAT and other next-generation radio telescopes. In particular we found that the composite dish surface works well, but it becomes complicated to fabricate for a dish lacking circular symmetry; the Stir- ling cycle cryogenic system with ion pump to achieve vacuum works but demands much higher maintenance than an equivalent Gifford-McMahon cycle system; the ROACH (Recon- figurable Open Architecture Computing Hardware)-based correlator with SPEAD (Stream- ing Protocol for Exchanging Astronomical Data) protocol data transfer works very well and KATCP (Karoo Array Telescope Control Protocol) control protocol has proven very flexible and convenient. KAT-7 has also been used for scientific observations where it has a niche in mapping low surface-brightness continuum sources, some extended HI halos and OH masers in star-forming regions. It can also be used to monitor continuum source variability, observe pulsars, and make VLBI observations
- Published
- 2016
- Full Text
- View/download PDF
21. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps
- Author
-
Clerkin, L., Kirk, D., Manera, M., Lahav, O., Abdalla, F., Amara, A., Bacon, D., Chang, C., Gaztañaga, E., Hawken, A., Jain, B., Joachimi, B., Vikram, V., Abbott, T., Allam, S., Armstrong, R., Benoit-Lévy, A, Bernstein, G. M., Bertin, E., Brooks, D., Burk, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Eifler, T. F., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Melchior, P., Miquel, R., Nord, B., Plazas, A. A., Romer, A. K., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Santos, M. Soares, Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., and Walker, A. R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation., Comment: 17 pages, 14 figures, submitted to MNRAS
- Published
- 2016
- Full Text
- View/download PDF
22. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914
- Author
-
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, P. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C. C., Areeda, J. S., Arnaud, N., Arun, K. G., Ascenzi, S., Ashton, G., Ast, M., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, P., Bader, M. K. M., Baker, P. T., Baldaccini, F., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barclay, S. E., Barish, B. C., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Barthelmy, S., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Batch, J. C., Baune, C., Bavigadda, V., Bazzan, M., Behnke, B., Bejger, M., Bell, A. S., Bell, C. J., Berger, B. K., Bergman, J., Bergmann, G., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I. A., Billingsley, G., Birch, J., Birney, R., Biscans, S., Bisht, A., Bitossi, M., Biwer, C., Bizouard, M. A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bloemen, S., Bock, O., Bodiya, T. P., Boer, M., Bogaert, G., Bogan, C., Bohe, A., Bojtos, P., Bond, C., Bondu, F., Bonnand, R., Boom, B. A., Bork, R., Boschi, V., Bose, S., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Briant, T., Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Brooks, A. F., Brown, D. A., Brown, D. D., Brown, N. M., Buchanan, C. C., Buikema, A., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. C., Callister, T., Calloni, E., Camp, J. B., Cannon, K. C., Cao, J., Capano, C. D., Capocasa, E., Carbognani, F., Caride, S., Diaz, J. C., Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C. B., Baiardi, L. C., Cerretani, G., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chamberlin, S. J., Chan, M., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, H. Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Cho, H. S., Cho, M., Chow, J. H., Christensen, N., Chu, Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Collette, C. G., Cominsky, L., Constancio Jr., M., Conte, A., Conti, L., Cook, D., Corbitt, T. R., Cornish, N., Corsi, A., Cortese, S., Costa, C. A., Coughlin, M. W., Coughlin, S. B., Coulon, J. -P., Countryman, S. T., Couvares, P., Cowan, E. E., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Cripe, J., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Canton, T. Dal, Danilishin, S. L., D'Antonio, S., Danzmann, K., Darman, N. S., Dattilo, V., Dave, I., Daveloza, H. P., Davier, M., Davies, G. S., Daw, E. J., Day, R., DeBra, D., Debreczeni, G., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R. T., De Rosa, R., DeSalvo, R., Dhurandhar, S., Díaz, M. C., Di Fiore, L., Di Giovanni, M., Di Lieto, A., Di Pace, S., Di Palma, I., Di Virgilio, A., Dojcinoski, G., Dolique, V., Donovan, F., Dooley, K. L., Doravari, S., Douglas, R., Downes, T. P., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Ducrot, M., Dwyer, S. E., Edo, T. B., Edwards, M. C., Effler, A., Eggenstein, H. -B., Ehrens, P., Eichholz, J., Eikenberry, S. S., Engels, W., Essick, R. C., Etzel, T., Evans, M., Evans, T. M., Everett, R., Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Fang, Q., Farinon, S., Farr, B., Farr, W. M., Favata, M., Fays, M., Fehrmann, H., Fejer, M. M., Ferrante, I., Ferreira, E. C., Ferrini, F., Fidecaro, F., Fiori, I., Fiorucci, D., Fisher, R. P., Flaminio, R., Fletcher, M., Fournier, J. -D., Franco, S., Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fricke, T. T., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Gabbard, H. A. G., Gair, J. R., Gammaitoni, L., Gaonkar, S. G., Garufi, F., Gatto, A., Gaur, G., Gehrels, N., Gemme, G., Gendre, B., Genin, E., Gennai, A., George, J., Gergely, L., Germain, V., Ghosh, A., Ghosh, S., Giaime, J. A., Giardina, K. D., Giazotto, A., Gill, K., Glaefke, A., Goetz, E., Goetz, R., Gondan, L., González, G., Castro, J. M. G., Gopakumar, A., Gordon, N. A., Gorodetsky, M. L., Gossan, S. E., Gosselin, M., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greco, G., Green, A. C., Groot, P., Grote, H., Grunewald, S., Guidi, G. M., Guo, X., Gupta, A., Gupta, M. K., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hacker, J. J., Hall, B. R., Hall, E. D., Hammond, G., Haney, M., Hanke, M. M., Hanks, J., Hanna, C., Hannam, M. D., Hanson, J., Hardwick, T., Haris, K., Harms, J., Harry, G. M., Harry, I. W., Hart, M. J., Hartman, M. T., Haster, C. -J., Haughian, K., Heidmann, A., Heintze, M. C., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Hennig, J., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Hofman, D., Hollitt, S. E., Holt, K., Holz, D. E., Hopkins, P., Hosken, D. J., Hough, J., Houston, E. A., Howell, E. J., Hu, Y. M., Huang, S., Huerta, E. A., Huet, D., Hughey, B., Husa, S., Huttner, S. H., Huynh-Dinh, T., Idrisy, A., Indik, N., Ingram, D. R., Inta, R., Isa, H. N., Isac, J. -M., Isi, M., Islas, G., Isogai, T., Iyer, B. R., Izumi, K., Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., Jawahar, S., Jiménez-Forteza, F., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., Kalaghatgi, C. V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Karki, S., Kasprzack, M., Katsavounidis, E., Katzman, W., Kaufer, S., Kaur, T., Kawabe, K., Kawazoe, F., Kéfélian, F., Kehl, M. S., Keitel, D., Kelley, D. B., Kells, W., Kennedy, R., Key, J. S., Khalaidovski, A., Khalili, F. Y., Khan, I., Khan, S., Khan, Z., Khazanov, E. A., Kijbunchoo, N., Kim, C., Kim, J., Kim, K., Kim, N., Kim, Y. -M., King, E. J., King, P. J., Kinzel, D. L., Kissel, J. S., Kleybolte, L., Klimenko, S., Koehlenbeck, S. M., Kokeyama, K., Koley, S., Kondrashov, V., Kontos, A., Korobko, M., Korth, W. Z., Kowalska, I., Kozak, D. B., Kringel, V., Królak, A., Krueger, C., Kuehn, G., Kumar, P., Kuo, L., Kutynia, A., Lackey, B. D., Landry, M., Lange, J., Lantz, B., Lasky, P. D., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lebigot, E. O., Lee, C. H., Lee, H. K., Lee, H. M., Lee, K., Lenon, A., Leonardi, M., Leong, J. R., Leroy, N., Letendre, N., Levin, Y., Levine, B. M., Li, T. G. F., Libson, A., Littenberg, T. B., Lockerbie, N. A., Logue, J., Lombardi, A. L., Lord, J. E., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Lück, H., Lundgren, A. P., Luo, J., Lynch, R., Ma, Y., MacDonald, T., Machenschalk, B., MacInnis, M., Macleod, D. M., Magaña-Sandoval, F., Magee, R. M., Mageswaran, M., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandel, I., Mandic, V., Mangano, V., Mansell, G. L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Maros, E., Martelli, F., Martellini, L., Martin, I. W., Martin, R. M., Martynov, D. V., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Masso-Reid, M., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McCormick, S., McGuire, S. C., McIntyre, G., McIver, J., McManus, D. J., McWilliams, S. T., Meacher, D., Meadors, G. D., Meidam, J., Melatos, A., Mendell, G., Mendoza-Gandara, D., Mercer, R. A., Merilh, E., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Meyers, P. M., Mezzani, F., Miao, H., Michel, C., Middleton, H., Mikhailov, E. E., Milano, L., Miller, J., Millhouse, M., Minenkov, Y., Ming, J., Mirshekari, S., Mishra, C., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moggi, A., Mohan, M., Mohapatra, S. R. P., Montani, M., Moore, B. C., Moore, C. J., Moraru, D., Moreno, G., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Muir, A. W., Mukherjee, A., Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Murphy, D. J., Murray, P. G., Mytidis, A., Nardecchia, I., Naticchioni, L., Nayak, R. K., Necula, V., Nedkova, K., Nelemans, G., Neri, M., Neunzert, A., Newton, G., Nguyen, T. T., Nielsen, A. B., Nissanke, S., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E. N., Nuttall, L. K., Oberling, J., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oliver, M., Oppermann, P., Oram, R. J., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palliyaguru, N., Palomba, C., Pal-Singh, A., Pan, H., Pankow, C., Pannarale, F., Pant, B. C., Paoletti, F., Paoli, A., Papa, M. A., Paris, H. R., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Z., Pearlstone, B. L., Pedraza, M., Pedurand, R., Pekowsky, L., Pele, A., Penn, S., Perreca, A., Phelps, M., Piccinni, O., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I. M., Pitkin, M., Poggiani, R., Popolizio, P., Post, A., Powell, J., Prasad, J., Predoi, V., Premachandra, S. S., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quetschke, V., Quintero, E. A., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Radkins, H., Raffai, P., Raja, S., Rakhmanov, M., Rapagnani, P., Raymond, V., Razzano, M., Re, V., Read, J., Reed, C. M., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Rew, H., Reyes, S. D., Ricci, F., Riles, K., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rolland, L., Rollins, J. G., Roma, V. J., Romano, R., Romanov, G., Romie, J. H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadeghian, L., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sammut, L., Sanchez, E. J., Sandberg, V., Sandeen, B., Sanders, J. R., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Sauter, O., Savage, R. L., Sawadsky, A., Schale, P., Schilling, R., Schmidt, J., Schmidt, P., Schnabel, R., Schofield, R. M. S., Schönbeck, A., Schreiber, E., Schuette, D., Schutz, B. F., Scott, J., Scott, S. M., Sellers, D., Sentenac, D., Sequino, V., Sergeev, A., Serna, G., Setyawati, Y., Sevigny, A., Shaddock, D. A., Shah, S., Shahriar, M. S., Shaltev, M., Shao, Z., Shapiro, B., Shawhan, P., Sheperd, A., Shoemaker, D. H., Shoemaker, D. M., Siellez, K., Siemens, X., Sigg, D., Silva, A. D., Simakov, D., Singer, A., Singh, A., Singh, R., Singhal, A., Sintes, A. M., Slagmolen, B. J. J., Smith, J. R., Smith, N. D., Smith, R. J. E., Son, E. J., Sorazu, B., Sorrentino, F., Souradeep, T., Srivastava, A. K., Staley, A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stephens, B. C., Stone, R., Strain, K. A., Straniero, N., Stratta, G., Strauss, N. A., Strigin, S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sun, L., Sutton, P. J., Swinkels, B. L., Szczepańczyk, M. J., Tacca, M., Talukder, D., Tanner, D. B., Tápai, M., Tarabrin, S. P., Taracchini, A., Taylor, R., Theeg, T., Thirugnanasambandam, M. P., Thomas, E. G., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, S., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Tonelli, M., Torres, C. V., Torrie, C. I., Töyrä, D., Travasso, F., Traylor, G., Trifirò, D., Tringali, M. C., Trozzo, L., Tse, M., Turconi, M., Tuyenbayev, D., Ugolini, D., Unnikrishnan, C. S., Urban, A. L., Usman, S. A., Vahlbruch, H., Vajente, G., Valdes, G., van Bakel, N., van Beuzekom, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Schaaf, L., van Heijningen, J. V., van Veggel, A. A., Vardaro, M., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Viceré, A., Vinciguerra, S., Vine, D. J., Vinet, J. -Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Voss, D., Vousden, W. D., Vyatchanin, S. P., Wade, A. R., Wade, L. E., Wade, M., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang, M., Wang, X., Wang, Y., Ward, R. L., Warner, J., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Weßels, P., Westphal, T., Wette, K., Whelan, J. T., White, D. J., Whiting, B. F., Williams, R. D., Williamson, A. R., Willis, J. L., Willke, B., Wimmer, M. H., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Wright, J. L., Wu, G., Yablon, J., Yam, W., Yamamoto, H., Yancey, C. C., Yap, M. J., Yu, H., Yvert, M., Zadrożny, A., Zangrando, L., Zanolin, M., Zendri, J. -P., Zevin, M., Zhang, F., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhou, Z., Zhu, X. J., Zucker, M. E., Zuraw, S. E., Zweizig, J., Allison, J., Bannister, K., Bell, M. E., Chatterjee, S., Chippendale, A. P., Edwards, P. G., Harvey-Smith, L., Heywood, Ian, Hotan, A., Indermuehle, B., Marvil, J., McConnell, D., Murphy, T., Popping, A., Reynolds, J., Sault, R. J., Voronkov, M. A., Whiting, M. T., Castro-Tirado, A. J., Cunniffe, R., Jelínek, M., Tello, J. C., Oates, S. R., Hu, Y. -D., Kubánek, P., Guziy, S., Castellón, A., García-Cerezo, A., Muñoz, V. F., del Pulgar, C. Pérez, Castillo-Carrión, S., Cerón, J. M. Castro, Hudec, R., Caballero-García, M. D., Páta, P., Vitek, S., Adame, J. A., Konig, S., Rendón, F., Sanguino, T. de J. Mateo, Fernández-Muñoz, R., Yock, P. C., Rattenbury, N., Allen, W. H., Querel, R., Jeong, S., Park, I. H., Bai, J., Cui, Ch., Fan, Y., Wang, Ch., Hiriart, D., Lee, W. H., Claret, A., Sánchez-Ramírez, R., Pandey, S. B., Mediavilla, T., Sabau-Graziati, L., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Berger, E., Bernstein, R. A., Bertin, E., Brout, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carretero, J., Castander, F. J., Chornock, R., Cowperthwaite, P. S., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doctor, Z., Drlica-Wagner, A., Drout, M. R., Eifler, T. F., Estrada, J., Evrard, A. E., Fernandez, E., Finley, D. A., Flaugher, B., Foley, R. J., Fong, W. -F., Fosalba, P., Fox, D. B., Frieman, J., Fryer, C. L., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Honscheid, K., James, D. J., Johnson, M. D., Johnson, M. W. G., Karliner, I., Kasen, D., Kent, S., Kessler, R., Kim, A. G., Kind, M. C., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Lin, H., Maia, M. A. G., Margutti, R., Marriner, J., Martini, P., Matheson, T., Melchior, P., Metzger, B. D., Miller, C. J., Miquel, R., Neilsen, E., Nichol, R. C., Nord, B., Nugent, P., Ogando, R., Petravick, D., Plazas, A. A., Quataert, E., Roe, N., Romer, A. K., Roodman, A., Rosell, A. C., Rykoff, E. S., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Scolnic, D., Sevilla-Noarbe, I., Sheldon, E., Smith, N., Smith, R. C., Soares-Santos, M., Sobreira, F., Stebbins, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Thomas, R. C., Tucker, D. L., Vikram, V., Walker, A. R., Wechsler, R. H., Wester, W., Yanny, B., Zuntz, J., Connaughton, V., Burns, E., Goldstein, A., Briggs, M. S., Zhang, B. -B., Hui, C. M., Jenke, P., Wilson-Hodge, C. A., Bhat, P. N., Bissaldi, E., Cleveland, W., Fitzpatrick, G., Giles, M. M., Gibby, M. H., Greiner, J., von Kienlin, A., Kippen, R. M., McBreen, S., Mailyan, B., Meegan, C. A., Paciesas, W. S., Preece, R. D., Roberts, O., Sparke, L., Stanbro, M., Toelge, K., Veres, P., Yu, H. -F., Blackburn, L., Ackermann, M., Ajello, M., Albert, A., Anderson, B., Atwood, W. B., Axelsson, M., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Blandford, R. D., Bloom, E. D., Bonino, R., Bottacini, E., Brandt, T. J., Bruel, P., Buson, S., Caliandro, G. A., Cameron, R. A., Caragiulo, M., Caraveo, P. A., Cavazzuti, E., Charles, E., Chekhtman, A., Chiang, J., Chiaro, G., Ciprini, S., Cohen-Tanugi, J., Cominsky, L. R., Costanza, F., Cuoco, A., D'Ammando, F., de Palma, F., Desiante, R., Digel, S. W., Di Lalla, N., Di Mauro, M., Di Venere, L., Domínguez, A., Drell, P. S., Dubois, R., Favuzzi, C., Ferrara, E. C., Franckowiak, A., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Giommi, P., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Gomez-Vargas, G. A., Green, D., Grenier, I. A., Grove, J. E., Guiriec, S., Hadasch, D., Harding, A. K., Hays, E., Hewitt, J. W., Hill, A. B., Horan, D., Jogler, T., Jóhannesson, G., Johnson, A. S., Kensei, S., Kocevski, D., Kuss, M., La Mura, G., Larsson, S., Latronico, L., Li, J., Li, L., Longo, F., Loparco, F., Lovellette, M. N., Lubrano, P., Magill, J., Maldera, S., Manfreda, A., Marelli, M., Mayer, M., Mazziotta, M. N., McEnery, J. E., Meyer, M., Michelson, P. F., Mirabal, N., Mizuno, T., Moiseev, A. A., Monzani, M. E., Moretti, E., Morselli, A., Moskalenko, I. V., Negro, M., Nuss, E., Ohsugi, T., Omodei, N., Orienti, M., Orlando, E., Ormes, J. F., Paneque, D., Perkins, J. S., Pesce-Rollins, M., Piron, F., Pivato, G., Porter, T. A., Racusin, J. L., Rainò, S., Rando, R., Razzaque, S., Reimer, A., Reimer, O., Salvetti, D., Parkinson, P. M. Saz, Sgrò, C., Simone, D., Siskind, E. J., Spada, F., Spandre, G., Spinelli, P., Suson, D. J., Tajima, H., Thayer, J. B., Thompson, D. J., Tibaldo, L., Torres, D. F., Troja, E., Uchiyama, Y., Venters, T. M., Vianello, G., Wood, K. S., Wood, M., Zhu, S., Zimmer, S., Brocato, E., Cappellaro, E., Covino, S., Grado, A., Nicastro, L., Palazzi, E., Pian, E., Amati, L., Antonelli, L. A., Capaccioli, M., D'Avanzo, P., D'Elia, V., Getman, F., Giuffrida, G., Iannicola, G., Limatola, L., Lisi, M., Marinoni, S., Marrese, P., Melandri, A., Piranomonte, S., Possenti, A., Pulone, L., Rossi, A., Stamerra, A., Stella, L., Testa, V., Tomasella, L., Yang, S., Bazzano, A., Bozzo, E., Brandt, S., Courvoisier, T. J. -L., Ferrigno, C., Hanlon, L., Kuulkers, E., Laurent, P., Mereghetti, S., Roques, J. P., Savchenko, V., Ubertini, P., Kasliwal, M. M., Singer, L. P., Cao, Y., Duggan, G., Kulkarni, S. R., Bhalerao, V., Miller, A. A., Barlow, T., Bellm, E., Manulis, I., Rana, J., Laher, R., Masci, F., Surace, J., Rebbapragada, U., Van Sistine, A., Sesar, B., Perley, D., Ferreti, R., Prince, T., Kendrick, R., Horesh, A., Hurley, K., Golenetskii, S. V., Aptekar, R. L., Frederiks, D. D., Svinkin, D. S., Rau, A., Zhang, X., Smith, D. M., Cline, T., Krimm, H., Abe, F., Doi, M., Fujisawa, K., Kawabata, K. S., Morokuma, T., Motohara, K., Tanaka, M., Ohta, K., Yanagisawa, K., Yoshida, M., Baltay, C., Rabinowitz, D., Ellman, N., Rostami, S., Bersier, D. F., Bode, M. F., Collins, C. A., Copperwheat, C. M., Darnley, M. J., Galloway, D. K., Gomboc, A., Kobayashi, S., Mazzali, P., Mundell, C. G., Piascik, A. S., Pollacco, Don, Steele, I. A., Ulaczyk, K., Broderick, J. W., Fender, R. P., Jonker, P. G., Rowlinson, A., Stappers, B. W., Wijers, R. A. M. J., Lipunov, V., Gorbovskoy, E., Tyurina, N., Kornilov, V., Balanutsa, P., Kuznetsov, A., Buckley, D., Rebolo, R., Serra-Ricart, M., Israelian, G., Budnev, N. M., Gress, O., Ivanov, K., Poleshuk, V., Tlatov, A., Yurkov, V., Kawai, N., Serino, M., Negoro, H., Nakahira, S., Mihara, T., Tomida, H., Ueno, S., Tsunemi, H., Matsuoka, M., Croft, S., Feng, L., Franzen, T. M. O., Gaensler, B. M., Johnston-Hollitt, M., Kaplan, D. L., Morales, M. F., Tingay, S. J., Wayth, R. B., Williams, A., Smartt, S. J., Chambers, K. C., Smith, K. W., Huber, M. E., Young, D. R., Wright, D. E., Schultz, A., Denneau, L., Flewelling, H., Magnier, E. A., Primak, N., Rest, A., Sherstyuk, A., Stalder, B., Stubbs, C. W., Tonry, J., Waters, C., Willman, M., E., F. Olivares, Campbell, H., Kotak, R., Sollerman, J., Smith, M., Dennefeld, M., Anderson, J. P., Botticella, M. T., Chen, T. -W., Valle, M. D., Elias-Rosa, N., Fraser, M., Inserra, C., Kankare, E., Kupfer, T., Harmanen, J., Galbany, L., Guillou, L. Le, Lyman, J. D., Maguire, K., Mitra, A., Nicholl, M., Razza, A., Terreran, G., Valenti, S., Gal-Yam, A., Ćwiek, A., Ćwiok, M., Mankiewicz, L., Opiela, R., Zaremba, M., Żarnecki, A. F., Onken, C. A., Scalzo, R. A., Schmidt, B. P., Wolf, C., Yuan, F., Evans, P. A., Kennea, J. A., Burrows, D. N., Campana, S., Cenko, S. B., Marshall, F. E., Nousek, J., O'Brien, P., Osborne, J. P., Palmer, D., Perri, M., Siegel, M., Tagliaferri, G., Klotz, A., Turpin, D., Laugier, R., Beroiz, M., Peñuela, T., Macri, L. M., Oelkers, R. J., Lambas, D. G., Vrech, R., Cabral, J., Colazo, C., Dominguez, M., Sanchez, B., Gurovich, S., Lares, M., Marshall, J. L., DePoy, D. L., Padilla, N., Pereyra, N. A., Benacquista, M., Tanvir, N. R., Wiersema, K., Levan, A. J., Steeghs, D., Hjorth, J., Fynbo, J. P. U., Malesani, D., Milvang-Jensen, B., Watson, D., Irwin, M., Fernandez, C. G., McMahon, R. G., Banerji, M., Gonzalez-Solares, E., Schulze, S., Postigo, A. de U., Thoene, C. C., Cano, Z., and Rosswog, S.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands., Comment: For the main Letter, see arXiv:1602.08492
- Published
- 2016
- Full Text
- View/download PDF
23. Galaxy-Galaxy Lensing in the DES Science Verification Data
- Author
-
Clampitt, J., Sánchez, C., Kwan, J., Krause, E., MacCrann, N., Park, Y., Troxel, M. A., Jain, B., Rozo, E., Rykoff, E. S., Wechsler, R. H., Blazek, J., Bonnett, C., Crocce, M., Fang, Y., Gaztanaga, E., Gruen, D., Jarvis, M., Miquel, R., Prat, J., Ross, A. J., Sheldon, E., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Becker, M. R., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gruendl, R. A., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Melchior, P., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., and Walker, A. R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters., Comment: 15 pages, 10 figures; Matches version accepted by MNRAS
- Published
- 2016
- Full Text
- View/download PDF
24. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data
- Author
-
Kacprzak, T., Kirk, D., Friedrich, O., Amara, A., Refregier, A., Marian, L., Dietrich, J. P., Suchyta, E., Aleksić, J., Bacon, D., Becker, M. R., Bonnett, C., Bridle, S. L., Chang, C., Eifler, T. F., Hartley, W., Huff, E. M., Krause, E., MacCrann, N., Melchior, P., Nicola, A., Samuroff, S., Sheldon, E., Troxel, M. A., Weller, J., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Martini, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., and Zhang, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg$^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $0<\mathcal S / \mathcal N<4$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $\Omega_{\rm m}$ and $\sigma_8$, fixing $w = -1$, $\Omega_{\rm b} = 0.04$, $h = 0.7$ and $n_s=1$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $\sigma_{8}(\Omega_{\rm m}/0.3)^{0.6}=0.77 \pm 0.07$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $\mathcal S / \mathcal N>4$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data., Comment: 21 pages, 14 figures, submitted to MNRAS
- Published
- 2016
- Full Text
- View/download PDF
25. Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT
- Author
-
Soergel, B., Flender, S., Story, K. T., Bleem, L., Giannantonio, T., Efstathiou, G., Rykoff, E., Benson, B. A., Crawford, T., Dodelson, S., Habib, S., Heitmann, K., Holder, G., Jain, B., Rozo, E., Saro, A., Weller, J., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Castander, F. J., Chiu, I., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., de Haan, T., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Holzapfel, W. L., Honscheid, K., James, D. J., Keisler, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Omori, Y., Plazas, A. A., Rapetti, D., Reichardt, C. L., Romer, A. K., Roodman, A., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Stark, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vieira, J. D., Walker, A. R., and Whitehorn, N.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of $4.2 \sigma$ by combining a cluster catalogue derived from the first year data of the Dark Energy Survey (DES) with CMB temperature maps from the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template we measure the average central optical depth of the cluster sample, $\bar{\tau}_e = (3.75 \pm 0.89)\cdot 10^{-3}$. We compare the extracted signal to realistic simulations and find good agreement with respect to the signal-to-noise, the constraint on $\bar{\tau}_e$, and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales $ \gtrsim 100$ Mpc., Comment: 23 pages, 14 figures; matches version published in MNRAS
- Published
- 2016
- Full Text
- View/download PDF
26. Localization and broadband follow-up of the gravitational-wave transient GW150914
- Author
-
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, P. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C. C., Areeda, J. S., Arnaud, N., Arun, K. G., Ascenzi, S., Ashton, G., Ast, M., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, P., Bader, M. K. M., Baker, P. T., Baldaccini, F., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barclay, S. E., Barish, B. C., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Barthelmy, S., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Batch, J. C., Baune, C., Bavigadda, V., Bazzan, M., Behnke, B., Bejger, M., Bell, A. S., Bell, C. J., Berger, B. K., Bergman, J., Bergmann, G., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I. A., Billingsley, G., Birch, J., Birney, R., Biscans, S., Bisht, A., Bitossi, M., Biwer, C., Bizouard, M. A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bloemen, S., Bock, O., Bodiya, T. P., Boer, M., Bogaert, G., Bogan, C., Bohe, A., Bojtos, P., Bond, C., Bondu, F., Bonnand, R., Boom, B. A., Bork, R., Boschi, V., Bose, S., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Briant, T., Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Brooks, A. F., Brown, D. A., Brown, D. D., Brown, N. M., Buchanan, C. C., Buikema, A., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. C., Callister, T., Calloni, E., Camp, J. B., Cannon, K. C., Cao, J., Capano, C. D., Capocasa, E., Carbognani, F., Caride, S., Diaz, J. C., Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C. B., Baiardi, L. C., Cerretani, G., Cesarini, E., Chakraborty, R., Chalermsongsak, T., Chamberlin, S. J., Chan, M., Chao, S., Charlton, P., Chassande-Mottin, E., Chen, H. Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Cho, H. S., Cho, M., Chow, J. H., Christensen, N., Chu, Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F., Colla, A., Collette, C. G., Cominsky, L., Constancio Jr., M., Conte, A., Conti, L., Cook, D., Corbitt, T. R., Cornish, N., Corsi, A., Cortese, S., Costa, C. A., Coughlin, M. W., Coughlin, S. B., Coulon, J. -P., Countryman, S. T., Couvares, P., Cowan, E. E., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Cripe, J., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Canton, T. Dal, Danilishin, S. L., D'Antonio, S., Danzmann, K., Darman, N. S., Dattilo, V., Dave, I., Daveloza, H. P., Davier, M., Davies, G. S., Daw, E. J., Day, R., DeBra, D., Debreczeni, G., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W., Denker, T., Dent, T., Dereli, H., Dergachev, V., DeRosa, R. T., De Rosa, R., DeSalvo, R., Dhurandhar, S., Díaz, M. C., Di Fiore, L., Di Giovanni, M., Di Lieto, A., Di Pace, S., Di Palma, I., Di Virgilio, A., Dojcinoski, G., Dolique, V., Donovan, F., Dooley, K. L., Doravari, S., Douglas, R., Downes, T. P., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Ducrot, M., Dwyer, S. E., Edo, T. B., Edwards, M. C., Effler, A., Eggenstein, H. -B., Ehrens, P., Eichholz, J., Eikenberry, S. S., Engels, W., Essick, R. C., Etzel, T., Evans, M., Evans, T. M., Everett, R., Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Fang, Q., Farinon, S., Farr, B., Farr, W. M., Favata, M., Fays, M., Fehrmann, H., Fejer, M. M., Ferrante, I., Ferreira, E. C., Ferrini, F., Fidecaro, F., Fiori, I., Fiorucci, D., Fisher, R. P., Flaminio, R., Fletcher, M., Fournier, J. -D., Franco, S., Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fricke, T. T., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Gabbard, H. A. G., Gair, J. R., Gammaitoni, L., Gaonkar, S. G., Garufi, F., Gatto, A., Gaur, G., Gehrels, N., Gemme, G., Gendre, B., Genin, E., Gennai, A., George, J., Gergely, L., Germain, V., Ghosh, A., Ghosh, S., Giaime, J. A., Giardina, K. D., Giazotto, A., Gill, K., Glaefke, A., Goetz, E., Goetz, R., Gondan, L., González, G., Castro, J. M. G., Gopakumar, A., Gordon, N. A., Gorodetsky, M. L., Gossan, S. E., Gosselin, M., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greco, G., Green, A. C., Groot, P., Grote, H., Grunewald, S., Guidi, G. M., Guo, X., Gupta, A., Gupta, M. K., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hacker, J. J., Hall, B. R., Hall, E. D., Hammond, G., Haney, M., Hanke, M. M., Hanks, J., Hanna, C., Hannam, M. D., Hanson, J., Hardwick, T., Haris, K., Harms, J., Harry, G. M., Harry, I. W., Hart, M. J., Hartman, M. T., Haster, C. -J., Haughian, K., Heidmann, A., Heintze, M. C., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Hennig, J., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hodge, K. A., Hofman, D., Hollitt, S. E., Holt, K., Holz, D. E., Hopkins, P., Hosken, D. J., Hough, J., Houston, E. A., Howell, E. J., Hu, Y. M., Huang, S., Huerta, E. A., Huet, D., Hughey, B., Husa, S., Huttner, S. H., Huynh-Dinh, T., Idrisy, A., Indik, N., Ingram, D. R., Inta, R., Isa, H. N., Isac, J. -M., Isi, M., Islas, G., Isogai, T., Iyer, B. R., Izumi, K., Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., Jawahar, S., Jiménez-Forteza, F., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., Kalaghatgi, C. V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Karki, S., Kasprzack, M., Katsavounidis, E., Katzman, W., Kaufer, S., Kaur, T., Kawabe, K., Kawazoe, F., Kéfélian, F., Kehl, M. S., Keitel, D., Kelley, D. B., Kells, W., Kennedy, R., Key, J. S., Khalaidovski, A., Khalili, F. Y., Khan, I., Khan, S., Khan, Z., Khazanov, E. A., Kijbunchoo, N., Kim, C., Kim, J., Kim, K., Kim, N., Kim, Y. -M., King, E. J., King, P. J., Kinzel, D. L., Kissel, J. S., Kleybolte, L., Klimenko, S., Koehlenbeck, S. M., Kokeyama, K., Koley, S., Kondrashov, V., Kontos, A., Korobko, M., Korth, W. Z., Kowalska, I., Kozak, D. B., Kringel, V., Królak, A., Krueger, C., Kuehn, G., Kumar, P., Kuo, L., Kutynia, A., Lackey, B. D., Landry, M., Lange, J., Lantz, B., Lasky, P. D., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lebigot, E. O., Lee, C. H., Lee, H. K., Lee, H. M., Lee, K., Lenon, A., Leonardi, M., Leong, J. R., Leroy, N., Letendre, N., Levin, Y., Levine, B. M., Li, T. G. F., Libson, A., Littenberg, T. B., Lockerbie, N. A., Logue, J., Lombardi, A. L., Lord, J. E., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Lück, H., Lundgren, A. P., Luo, J., Lynch, R., Ma, Y., MacDonald, T., Machenschalk, B., MacInnis, M., Macleod, D. M., Magaña-Sandoval, F., Magee, R. M., Mageswaran, M., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandel, I., Mandic, V., Mangano, V., Mansell, G. L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Maros, E., Martelli, F., Martellini, L., Martin, I. W., Martin, R. M., Martynov, D. V., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Masso-Reid, M., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., Mazzolo, G., McCarthy, R., McClelland, D. E., McCormick, S., McGuire, S. C., McIntyre, G., McIver, J., McManus, D. J., McWilliams, S. T., Meacher, D., Meadors, G. D., Meidam, J., Melatos, A., Mendell, G., Mendoza-Gandara, D., Mercer, R. A., Merilh, E., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Meyers, P. M., Mezzani, F., Miao, H., Michel, C., Middleton, H., Mikhailov, E. E., Milano, L., Miller, J., Millhouse, M., Minenkov, Y., Ming, J., Mirshekari, S., Mishra, C., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moggi, A., Mohan, M., Mohapatra, S. R. P., Montani, M., Moore, B. C., Moore, C. J., Moraru, D., Moreno, G., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, C. L., Mueller, G., Muir, A. W., Mukherjee, A., Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Murphy, D. J., Murray, P. G., Mytidis, A., Nardecchia, I., Naticchioni, L., Nayak, R. K., Necula, V., Nedkova, K., Nelemans, G., Neri, M., Neunzert, A., Newton, G., Nguyen, T. T., Nielsen, A. B., Nissanke, S., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E. N., Nuttall, L. K., Oberling, J., Ochsner, E., O'Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oliver, M., Oppermann, P., Oram, R. J., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palliyaguru, N., Palomba, C., Pal-Singh, A., Pan, H., Pankow, C., Pannarale, F., Pant, B. C., Paoletti, F., Paoli, A., Papa, M. A., Paris, H. R., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Z., Pearlstone, B. L., Pedraza, M., Pedurand, R., Pekowsky, L., Pele, A., Penn, S., Perreca, A., Phelps, M., Piccinni, O., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I. M., Pitkin, M., Poggiani, R., Popolizio, P., Post, A., Powell, J., Prasad, J., Predoi, V., Premachandra, S. S., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quetschke, V., Quintero, E. A., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Radkins, H., Raffai, P., Raja, S., Rakhmanov, M., Rapagnani, P., Raymond, V., Razzano, M., Re, V., Read, J., Reed, C. M., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Rew, H., Reyes, S. D., Ricci, F., Riles, K., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rolland, L., Rollins, J. G., Roma, V. J., Romano, R., Romanov, G., Romie, J. H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadeghian, L., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sammut, L., Sanchez, E. J., Sandberg, V., Sandeen, B., Sanders, J. R., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Sauter, O., Savage, R. L., Sawadsky, A., Schale, P., Schilling, R., Schmidt, J., Schmidt, P., Schnabel, R., Schofield, R. M. S., Schönbeck, A., Schreiber, E., Schuette, D., Schutz, B. F., Scott, J., Scott, S. M., Sellers, D., Sentenac, D., Sequino, V., Sergeev, A., Serna, G., Setyawati, Y., Sevigny, A., Shaddock, D. A., Shah, S., Shahriar, M. S., Shaltev, M., Shao, Z., Shapiro, B., Shawhan, P., Sheperd, A., Shoemaker, D. H., Shoemaker, D. M., Siellez, K., Siemens, X., Sigg, D., Silva, A. D., Simakov, D., Singer, A., Singh, A., Singh, R., Singhal, A., Sintes, A. M., Slagmolen, B. J. J., Smith, J. R., Smith, N. D., Smith, R. J. E., Son, E. J., Sorazu, B., Sorrentino, F., Souradeep, T., Srivastava, A. K., Staley, A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stephens, B. C., Stone, R., Strain, K. A., Straniero, N., Stratta, G., Strauss, N. A., Strigin, S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sun, L., Sutton, P. J., Swinkels, B. L., Szczepańczyk, M. J., Tacca, M., Talukder, D., Tanner, D. B., Tápai, M., Tarabrin, S. P., Taracchini, A., Taylor, R., Theeg, T., Thirugnanasambandam, M. P., Thomas, E. G., Thomas, M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Tiwari, S., Tiwari, V., Tokmakov, K. V., Tomlinson, C., Tonelli, M., Torres, C. V., Torrie, C. I., Töyrä, D., Travasso, F., Traylor, G., Trifirò, D., Tringali, M. C., Trozzo, L., Tse, M., Turconi, M., Tuyenbayev, D., Ugolini, D., Unnikrishnan, C. S., Urban, A. L., Usman, S. A., Vahlbruch, H., Vajente, G., Valdes, G., van Bakel, N., van Beuzekom, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Schaaf, L., van Heijningen, J. V., van Veggel, A. A., Vardaro, M., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Viceré, A., Vinciguerra, S., Vine, D. J., Vinet, J. -Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Voss, D., Vousden, W. D., Vyatchanin, S. P., Wade, A. R., Wade, L. E., Wade, M., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang, M., Wang, X., Wang, Y., Ward, R. L., Warner, J., Was, M., Weaver, B., Wei, L. -W., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Weßels, P., Westphal, T., Wette, K., Whelan, J. T., White, D. J., Whiting, B. F., Williams, R. D., Williamson, A. R., Willis, J. L., Willke, B., Wimmer, M. H., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Worden, J., Wright, J. L., Wu, G., Yablon, J., Yam, W., Yamamoto, H., Yancey, C. C., Yap, M. J., Yu, H., Yvert, M., Zadrożny, A., Zangrando, L., Zanolin, M., Zendri, J. -P., Zevin, M., Zhang, F., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhou, Z., Zhu, X. J., Zucker, M. E., Zuraw, S. E., Zweizig, J., Allison, J., Bannister, K., Bell, M. E., Chatterjee, S., Chippendale, A. P., Edwards, P. G., Harvey-Smith, L., Heywood, Ian, Hotan, A., Indermuehle, B., Marvil, J., McConnell, D., Murphy, T., Popping, A., Reynolds, J., Sault, R. J., Voronkov, M. A., Whiting, M. T., Castro-Tirado, A. J., Cunniffe, R., Jelínek, M., Tello, J. C., Oates, S. R., Hu, Y. -D., Kubánek, P., Guziy, S., Castellón, A., García-Cerezo, A., Muñoz, V. F., del Pulgar, C. Pérez, Castillo-Carrión, S., Cerón, J. M. Castro, Hudec, R., Caballero-García, M. D., Páta, P., Vitek, S., Adame, J. A., Konig, S., Rendón, F., Sanguino, T. de J. Mateo, Fernández-Muñoz, R., Yock, P. C., Rattenbury, N., Allen, W. H., Querel, R., Jeong, S., Park, I. H., Bai, J., Cui, Ch., Fan, Y., Wang, Ch., Hiriart, D., Lee, W. H., Claret, A., Sánchez-Ramírez, R., Pandey, S. B., Mediavilla, T., Sabau-Graziati, L., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Berger, E., Bernstein, R. A., Bertin, E., Brout, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carretero, J., Castander, F. J., Chornock, R., Cowperthwaite, P. S., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doctor, Z., Drlica-Wagner, A., Drout, M. R., Eifler, T. F., Estrada, J., Evrard, A. E., Fernandez, E., Finley, D. A., Flaugher, B., Foley, R. J., Fong, W. -F., Fosalba, P., Fox, D. B., Frieman, J., Fryer, C. L., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Honscheid, K., James, D. J., Johnson, M. D., Johnson, M. W. G., Karliner, I., Kasen, D., Kent, S., Kessler, R., Kim, A. G., Kind, M. C., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Lin, H., Maia, M. A. G., Margutti, R., Marriner, J., Martini, P., Matheson, T., Melchior, P., Metzger, B. D., Miller, C. J., Miquel, R., Neilsen, E., Nichol, R. C., Nord, B., Nugent, P., Ogando, R., Petravick, D., Plazas, A. A., Quataert, E., Roe, N., Romer, A. K., Roodman, A., Rosell, A. C., Rykoff, E. S., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Scolnic, D., Sevilla-Noarbe, I., Sheldon, E., Smith, N., Smith, R. C., Soares-Santos, M., Sobreira, F., Stebbins, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Thomas, R. C., Tucker, D. L., Vikram, V., Walker, A. R., Wechsler, R. H., Wester, W., Yanny, B., Zuntz, J., Connaughton, V., Burns, E., Goldstein, A., Briggs, M. S., Zhang, B. -B., Hui, C. M., Jenke, P., Wilson-Hodge, C. A., Bhat, P. N., Bissaldi, E., Cleveland, W., Fitzpatrick, G., Giles, M. M., Gibby, M. H., Greiner, J., von Kienlin, A., Kippen, R. M., McBreen, S., Mailyan, B., Meegan, C. A., Paciesas, W. S., Preece, R. D., Roberts, O., Sparke, L., Stanbro, M., Toelge, K., Veres, P., Yu, H. -F., Blackburn, L., Ackermann, M., Ajello, M., Albert, A., Anderson, B., Atwood, W. B., Axelsson, M., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Blandford, R. D., Bloom, E. D., Bonino, R., Bottacini, E., Brandt, T. J., Bruel, P., Buson, S., Caliandro, G. A., Cameron, R. A., Caragiulo, M., Caraveo, P. A., Cavazzuti, E., Charles, E., Chekhtman, A., Chiang, J., Chiaro, G., Ciprini, S., Cohen-Tanugi, J., Cominsky, L. R., Costanza, F., Cuoco, A., D'Ammando, F., de Palma, F., Desiante, R., Digel, S. W., Di Lalla, N., Di Mauro, M., Di Venere, L., Domínguez, A., Drell, P. S., Dubois, R., Favuzzi, C., Ferrara, E. C., Franckowiak, A., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Giommi, P., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Gomez-Vargas, G. A., Green, D., Grenier, I. A., Grove, J. E., Guiriec, S., Hadasch, D., Harding, A. K., Hays, E., Hewitt, J. W., Hill, A. B., Horan, D., Jogler, T., Jóhannesson, G., Johnson, A. S., Kensei, S., Kocevski, D., Kuss, M., La Mura, G., Larsson, S., Latronico, L., Li, J., Li, L., Longo, F., Loparco, F., Lovellette, M. N., Lubrano, P., Magill, J., Maldera, S., Manfreda, A., Marelli, M., Mayer, M., Mazziotta, M. N., McEnery, J. E., Meyer, M., Michelson, P. F., Mirabal, N., Mizuno, T., Moiseev, A. A., Monzani, M. E., Moretti, E., Morselli, A., Moskalenko, I. V., Negro, M., Nuss, E., Ohsugi, T., Omodei, N., Orienti, M., Orlando, E., Ormes, J. F., Paneque, D., Perkins, J. S., Pesce-Rollins, M., Piron, F., Pivato, G., Porter, T. A., Racusin, J. L., Rainò, S., Rando, R., Razzaque, S., Reimer, A., Reimer, O., Salvetti, D., Parkinson, P. M. Saz, Sgrò, C., Simone, D., Siskind, E. J., Spada, F., Spandre, G., Spinelli, P., Suson, D. J., Tajima, H., Thayer, J. B., Thompson, D. J., Tibaldo, L., Torres, D. F., Troja, E., Uchiyama, Y., Venters, T. M., Vianello, G., Wood, K. S., Wood, M., Zhu, S., Zimmer, S., Brocato, E., Cappellaro, E., Covino, S., Grado, A., Nicastro, L., Palazzi, E., Pian, E., Amati, L., Antonelli, L. A., Capaccioli, M., D'Avanzo, P., D'Elia, V., Getman, F., Giuffrida, G., Iannicola, G., Limatola, L., Lisi, M., Marinoni, S., Marrese, P., Melandri, A., Piranomonte, S., Possenti, A., Pulone, L., Rossi, A., Stamerra, A., Stella, L., Testa, V., Tomasella, L., Yang, S., Bazzano, A., Bozzo, E., Brandt, S., Courvoisier, T. J. -L., Ferrigno, C., Hanlon, L., Kuulkers, E., Laurent, P., Mereghetti, S., Roques, J. P., Savchenko, V., Ubertini, P., Kasliwal, M. M., Singer, L. P., Cao, Y., Duggan, G., Kulkarni, S. R., Bhalerao, V., Miller, A. A., Barlow, T., Bellm, E., Manulis, I., Rana, J., Laher, R., Masci, F., Surace, J., Rebbapragada, U., Van Sistine, A., Sesar, B., Perley, D., Ferreti, R., Prince, T., Kendrick, R., Horesh, A., Hurley, K., Golenetskii, S. V., Aptekar, R. L., Frederiks, D. D., Svinkin, D. S., Rau, A., Zhang, X., Smith, D. M., Cline, T., Krimm, H., Abe, F., Doi, M., Fujisawa, K., Kawabata, K. S., Morokuma, T., Motohara, K., Tanaka, M., Ohta, K., Yanagisawa, K., Yoshida, M., Baltay, C., Rabinowitz, D., Ellman, N., Rostami, S., Bersier, D. F., Bode, M. F., Collins, C. A., Copperwheat, C. M., Darnley, M. J., Galloway, D. K., Gomboc, A., Kobayashi, S., Mazzali, P., Mundell, C. G., Piascik, A. S., Pollacco, Don, Steele, I. A., Ulaczyk, K., Broderick, J. W., Fender, R. P., Jonker, P. G., Rowlinson, A., Stappers, B. W., Wijers, R. A. M. J., Lipunov, V., Gorbovskoy, E., Tyurina, N., Kornilov, V., Balanutsa, P., Kuznetsov, A., Buckley, D., Rebolo, R., Serra-Ricart, M., Israelian, G., Budnev, N. M., Gress, O., Ivanov, K., Poleshuk, V., Tlatov, A., Yurkov, V., Kawai, N., Serino, M., Negoro, H., Nakahira, S., Mihara, T., Tomida, H., Ueno, S., Tsunemi, H., Matsuoka, M., Croft, S., Feng, L., Franzen, T. M. O., Gaensler, B. M., Johnston-Hollitt, M., Kaplan, D. L., Morales, M. F., Tingay, S. J., Wayth, R. B., Williams, A., Smartt, S. J., Chambers, K. C., Smith, K. W., Huber, M. E., Young, D. R., Wright, D. E., Schultz, A., Denneau, L., Flewelling, H., Magnier, E. A., Primak, N., Rest, A., Sherstyuk, A., Stalder, B., Stubbs, C. W., Tonry, J., Waters, C., Willman, M., E., F. Olivares, Campbell, H., Kotak, R., Sollerman, J., Smith, M., Dennefeld, M., Anderson, J. P., Botticella, M. T., Chen, T. -W., Valle, M. D., Elias-Rosa, N., Fraser, M., Inserra, C., Kankare, E., Kupfer, T., Harmanen, J., Galbany, L., Guillou, L. Le, Lyman, J. D., Maguire, K., Mitra, A., Nicholl, M., Razza, A., Terreran, G., Valenti, S., Gal-Yam, A., Ćwiek, A., Ćwiok, M., Mankiewicz, L., Opiela, R., Zaremba, M., Żarnecki, A. F., Onken, C. A., Scalzo, R. A., Schmidt, B. P., Wolf, C., Yuan, F., Evans, P. A., Kennea, J. A., Burrows, D. N., Campana, S., Cenko, S. B., Marshall, F. E., Nousek, J., O'Brien, P., Osborne, J. P., Palmer, D., Perri, M., Siegel, M., Tagliaferri, G., Klotz, A., Turpin, D., Laugier, R., Beroiz, M., Peñuela, T., Macri, L. M., Oelkers, R. J., Lambas, D. G., Vrech, R., Cabral, J., Colazo, C., Dominguez, M., Sanchez, B., Gurovich, S., Lares, M., Marshall, J. L., DePoy, D. L., Padilla, N., Pereyra, N. A., Benacquista, M., Tanvir, N. R., Wiersema, K., Levan, A. J., Steeghs, D., Hjorth, J., Fynbo, J. P. U., Malesani, D., Milvang-Jensen, B., Watson, D., Irwin, M., Fernandez, C. G., McMahon, R. G., Banerji, M., Gonzalez-Solares, E., Schulze, S., Postigo, A. de U., Thoene, C. C., Cano, Z., and Rosswog, S.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams., Comment: For Supplement, see https://arxiv.org/abs/1604.07864
- Published
- 2016
- Full Text
- View/download PDF
27. Joint Measurement of Lensing-Galaxy Correlations Using SPT and DES SV Data
- Author
-
Baxter, E. J., Clampitt, J., Giannantonio, T., Dodelson, S., Jain, B., Huterer, D., Bleem, L. E., Crawford, T. M., Efstathiou, G., Fosalba, P., Kirk, D., Kwan, J., Sánchez, C., Story, K. T., Troxel, M. A., Abbott, T. M. C., Abdalla, F. B., Armstrong, R., Benoit-Lévy, A., Benson, B. A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Frieman, J., Gruen, D., Gruendl, R. A., Gutierrez, G., de Haan, T., Holder, G. P., Honscheid, K., Hou, Z., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nord, B., Omori, Y., Plazas, A. A., Reichardt, C. L., Romer, A. K., Rykoff, E. S., Sanchez, E., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Stark, A. A., Swanson, M. E. C., Tarle, G., Thomas, D., Walker, A. R., and Wechsler, R. H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favored $\Lambda$CDM cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys., Comment: 17 pages, 9 figures. Accepted for publication in MNRAS. This version has been revised in response to referee comments
- Published
- 2016
- Full Text
- View/download PDF
28. A Dark Energy Camera Search for an Optical Counterpart to the First Advanced LIGO Gravitational Wave Event GW150914
- Author
-
Soares-Santos, M., Kessler, R., Berger, E., Annis, J., Brout, D., Buckley-Geer, E., Chen, H., Cowperthwaite, P. S., Diehl, H. T., Doctor, Z., Drlica-Wagner, A., Farr, B., Finley, D. A., Flaugher, B., Foley, R. J., Frieman, J., Gruendl, R. A., Herner, K., Holz, D., Lin, H., Marriner, J., Neilsen, E., Rest, A., Sako, M., Scolnic, D., Sobreira, F., Walker, A. R., Wester, W., Yanny, B., Abbott, T. M. C., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brown, D. A., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cenko, S. B., Chornock, R., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Drout, M. R., Eifler, T. F., Estrada, J., Evrard, A. E., Fairhurst, S., Fernandez, E., Fischer, J., Fong, W., Fosalba, P., Fox, D. B., Fryer, C. L., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gutierrez, G., Honscheid, K., James, D. J., Karliner, I., Kasen, D., Kent, S., Kuropatkin, N., Kuehn, K., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., Margutti, R., Martini, P., Matheson, T., McMahon, R. G., Metzger, B. D., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Peoples, J., Plazas, A. A., Quataert, E., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Smith, N., Smith, R. C., Stebbins, A., Sutton, P. J., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, R. C., Tucker, D. L., Vikram, V., Wechsler, R. H., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg$^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $5\sigma$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$^{2}$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field., Comment: 6 pages, 1 figure. Updated references. Submitted to ApJL
- Published
- 2016
- Full Text
- View/download PDF
29. Redshift distributions of galaxies in the DES Science Verification shear catalogue and implications for weak lensing
- Author
-
Bonnett, C., Troxel, M. A., Hartley, W., Amara, A., Leistedt, B., Becker, M. R., Bernstein, G. M., Bridle, S., Bruderer, C., Busha, M. T., Kind, M. Carrasco, Childress, M. J., Castander, F. J., Chang, C., Crocce, M., Davis, T. M., Eifler, T. F., Frieman, J., Gangkofner, C., Gaztanaga, E., Glazebrook, K., Gruen, D., Kacprzak, T., King, A., Kwan, J., Lahav, O., Lewis, G., Lidman, C., Lin, H., MacCrann, N., Miquel, R., O'Neill, C. R., Palmese, A., Peiris, H. V., Refregier, A., Rozo, E., Rykoff, E. S., Sadeh, I., Sánchez, C., Sheldon, E., Uddin, S., Wechsler, R. H., Zuntz, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bauer, A. H., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Neto, A. Fausti, Fernandez, E., Flaugher, B., Fosalba, P., Gerdes, D. W., Gruendl, R. A., Honscheid, K., Jain, B., James, D. J., Jarvis, M., Kim, A. G., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Neilsen, E., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Vikram, V., and Walker, A. R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods -- ANNZ2, BPZ calibrated against BCC-Ufig simulations, SkyNet, and TPZ -- are analysed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift $0.72\pm0.01$ over the range $0.3
- Published
- 2015
- Full Text
- View/download PDF
30. The DES Science Verification Weak Lensing Shear Catalogues
- Author
-
Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., Chang, C., Das, R., Dietrich, J. P., Drlica-Wagner, A., Eifler, T. F., Gangkofner, C., Gruen, D., Hirsch, M., Huff, E. M., Jain, B., Kent, S., Kirk, D., MacCrann, N., Melchior, P., Plazas, A. A., Refregier, A., Rowe, B., Rykoff, E. S., Samuroff, S., Sánchez, C., Suchyta, E., Troxel, M. A., Vikram, V., Abbott, T., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Clampitt, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., March, M., Martini, P., Miquel, R., Mohr, J. J., Neilsen, E., Nord, B., Ogando, R., Reil, K., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Walker, A. R., and Wechsler, R. H.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees., Comment: Accepted by MNRAS; 38 pages, 29 figures; v3: minor edits based on referee's comments, switched to mnras style, added figure 8, updated info about released catalogs
- Published
- 2015
- Full Text
- View/download PDF
31. Cosmic Shear Measurements with DES Science Verification Data
- Author
-
Becker, M. R., Troxel, M. A., MacCrann, N., Krause, E., Eifler, T. F., Friedrich, O., Nicola, A., Refregier, A., Amara, A., Bacon, D., Bernstein, G. M., Bonnett, C., Bridle, S. L., Busha, M. T., Chang, C., Dodelson, S., Erickson, B., Evrard, A. E., Frieman, J., Gaztanaga, E., Gruen, D., Hartley, W., Jain, B., Jarvis, M., Kacprzak, T., Kirk, D., Kravtsov, A., Leistedt, B., Rykoff, E. S., Sabiu, C., Sanchez, C., Seo, H., Sheldon, E., Wechsler, R. H., Zuntz, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bauer, A. H., Benoit-Levy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Neto, A. Fausti, Fernandez, E., Finley, D. A., Flaugher, B., Fosalba, P., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Vikram, V., Walker, A. R., and Collaboration, The DES
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7sigma. Cosmological constraints from the measurements in this work are presented in a companion paper (DES et al. 2015)., Comment: measurements and covariance matrices in machine readable format are available as ancillary data on the arXiv; high-resolution versions of figures can be downloaded from http://deswl.github.io
- Published
- 2015
- Full Text
- View/download PDF
32. CMB lensing tomography with the DES Science Verification galaxies
- Author
-
Giannantonio, T., Fosalba, P., Cawthon, R., Omori, Y., Crocce, M., Elsner, F., Leistedt, B., Dodelson, S., Benoit-Levy, A., Gaztanaga, E., Holder, G., Peiris, H. V., Percival, W. J., Kirk, D., Bauer, A. H., Benson, B. A., Bernstein, G. M., Carretero, J., Crawford, T. M., Crittenden, R., Huterer, D., Jain, B., Krause, E., Reichardt, C. L., Ross, A. J., Simard, G., Soergel, B., Stark, A., Story, K. T., Vieira, J. D., Weller, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Castander, F. J., Chang, C. L., Cunha, C. E., da Costa, L. N., D'Andrea, C. B., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Fernandez, E., Finley, D. A., Flaugher, B., Frieman, J., Gerdes, D., Gruen, D., Gruendl, R. A., Gutierrez, G., Holzapfel, W. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., March, M., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sako, M., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Vikram, V., Walker, A. R., Wechsler, R. H., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range $0.2 < z < 1.2$, a cross-correlation signal is detected at $6 \sigma$ and $4\sigma$ with SPT and Planck respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant ($>$$2 \sigma$) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the $z<1.2$ universe is $0.73 \pm 0.16$ times as large as predicted in the LCDM Planck cosmology, a $1.7\sigma$ deviation., Comment: 32 pages, 29 figures, minor modifications to match version published by MNRAS
- Published
- 2015
- Full Text
- View/download PDF
33. Cosmology from Cosmic Shear with DES Science Verification Data
- Author
-
The Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., Becker, M. R., Benoit-Lévy, A., Bernstein, R. A., Bernstein, G. M., Bertin, E., Blazek, J., Bonnett, C., Bridle, S. L., Brooks, D., Bruderer, C., Buckley-Geer, E., Burke, D. L., Busha, M. T., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Chang, C., Clampitt, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Das, R., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Drlica-Wagner, A., Efstathiou, G., Eifler, T. F., Erickson, B., Estrada, J., Evrard, A. E., Neto, A. Fausti, Fernandez, E., Finley, D. A., Flaugher, B., Fosalba, P., Friedrich, O., Frieman, J., Gangkofner, C., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Hartley, W., Hirsch, M., Honscheid, K., Huff, E. M., Jain, B., James, D. J., Jarvis, M., Kacprzak, T., Kent, S., Kirk, D., Krause, E., Kravtsov, A., Kuehn, K., Kuropatkin, N., Kwan, J., Lahav, O., Leistedt, B., Li, T. S., Lima, M., Lin, H., MacCrann, N., March, M., Marshall, J. L., Martini, P., McMahon, R. G., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Neilsen, E., Nichol, R. C., Nicola, A., Nord, B., Ogando, R., Palmese, A., Peiris, H. V., Plazas, A. A., Refregier, A., Roe, N., Romer, A. K., Roodman, A., Rowe, B., Rykoff, E. S., Sabiu, C., Sadeh, I., Sako, M., Samuroff, S., Sánchez, C., Sanchez, E., Seo, H., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Troxel, M. A., Vikram, V., Walker, A. R., Wechsler, R. H., Weller, J., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3\% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find $\sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.81 \pm 0.06$ (68\% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$\% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $\sim$30\% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $\sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ is present regardless of the value of $w$., Comment: Finally updating to the published version. 20 pages, 12 figures. Additional information at http://deswl.github.io/
- Published
- 2015
- Full Text
- View/download PDF
34. Weak lensing by galaxy troughs in DES Science Verification data
- Author
-
Gruen, D., Friedrich, O., Amara, A., Bacon, D., Bonnett, C., Hartley, W., Jain, B., Jarvis, M., Kacprzak, T., Krause, E., Mana, A., Rozo, E., Rykoff, E. S., Seitz, S., Sheldon, E., Troxel, M. A., Vikram, V., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bauer, A. H., Becker, M. R., Benoit-Levy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Neto, A. Fausti, Fernandez, E., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Walker, A. R., Wechsler, R. H., Weller, J., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10 to 15$\sigma$ for the smallest angular scales) for troughs with the redshift range z in [0.2,0.5] of the projected galaxy field and angular diameters of 10 arcmin...1{\deg}. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Lambda cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field., Comment: 15 pages, 8 figures; matches accepted version; high-resolution versions of figures can be downloaded from http://deswl.github.io
- Published
- 2015
35. Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters
- Author
-
Saro, A., Bocquet, S., Rozo, E., Benson, B. A., Mohr, J., Rykoff, E. S., Soares-Santos, M., Bleem, L., Dodelson, S., Melchior, P., Sobreira, F., Upadhyay, V., Weller, J., Abbott, T., Abdalla, F. B., Allam, S., Armstrong, R., Banerji, M., Bauer, A. H., Bayliss, M., Benoit-Levy, A., Bernstein, G. M., Bertin, E., Brodwin, M., Brooks, D., Buckley-Geer, E., Burke, D. L., Carlstrom, J. E., Capasso, R., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Chiu, I., Covarrubias, R., Crawford, T. M., Crocce, M., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., de Haan, T., Diehl, H. T., Dietrich, J. P., Doel, P., Cunha, C. E, Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Fernandez, E., Flaugher, B., Fosalba, P., Frieman, J., Gangkofner, C., Gaztanaga, E., Gerdes, D., Gruen, D., Gruendl, R. A., Gupta, N., Hennig, C., Holzapfel, W. L., Honscheid, K., Jain, B., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lin, H., Maia, M. A. G., March, M., Marshall, J. L., Martini, Paul, McDonald, M., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C. L., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Schubnell, M., Sevilla, I., Smith, R. C., Stalder, B., Stark, A. A., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Tucker, D., Vikram, V., von der Linden, A., Walker, A. R., Wechsler, R. H., Wester, W., Zenteno, A., and Ziegler, K. E.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg$^2$ of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey (DES) science verification data. We identify 25 clusters between $0.1\lesssim z\lesssim 0.8$ in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness $\lambda$-mass relation with the following function $\langle\ln\lambda|M_{500}\rangle\propto B_\lambda\ln M_{500}+C_\lambda\ln E(z)$ and use SPT-SZ cluster masses and RM richnesses $\lambda$ to constrain the parameters. We find $B_\lambda= 1.14^{+0.21}_{-0.18}$ and $C_\lambda=0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $\sigma_{\ln M|\lambda} = 0.18^{+0.08}_{-0.05}$ at a characteristic richness $\lambda=70$. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ selected clusters with RM counterparts is consistent with expectations and that the fraction of RM selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a sub-dominant population characterized by larger offsets. We also cross-match the RM catalog with SPT-SZ candidates below the official catalog threshold significance $\xi=4.5$, using the RM catalog to provide optical confirmation and redshifts for additional low-$\xi$ SPT-SZ candidates.In this way, we identify 15 additional clusters with $\xi\in [4,4.5]$ over the redshift regime explored by RM in the overlapping region between DES science verification data and the SPT-SZ survey., Comment: 15 pages, 8 Figures, submitted to MNRAS
- Published
- 2015
- Full Text
- View/download PDF
36. Wide-Field Lensing Mass Maps from DES Science Verification Data: Methodology and Detailed Analysis
- Author
-
Vikram, V., Chang, C., Jain, B., Bacon, D., Amara, A., Becker, M. R., Bernstein, G., Bonnett, C., Bridle, S., Brout, D., Busha, M., Frieman, J., Gaztanaga, E., Hartley, W., Jarvis, M., Kacprzak, T., Kovacs, A., Lahav, O., Leistedt, B., Lin, H., Melchior, P., Peiris, H., Rozo, E., Rykoff, E., Sanchez, C., Sheldon, E., Troxel, M. A., Wechsler, R., Zuntz, J., Abbott, T., Abdalla, F. B., Armstrong, R., Banerji, M., Bauer, A. H., Benoit-Levy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Castander, F. J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Estrada, J., Evrard, A. E., Neto, A. Fausti, Fernandez, E., Flaugher, B., Fosalba, P., Gerdes, D., Gruen, D., Gruendl, R. A., Honscheid, K., James, D., Kent, S., Kuehn, K., Kuropatkin, N., Li, T. S., Maia, M. A. G., Makler, M., March, M., Marshall, J., Martini, P., Merritt, K. W., Miller, C. J., Miquel, R., Neilsen, E., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Walker, A. R., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These "mass maps" provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 sq. deg area from the Dark Energy Survey (DES) Science Verification (SV) data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8-sigma level with 20 arcminute smoothing. A major goal of this study is to investigate systematic effects arising from a variety of sources, including PSF and photo-z uncertainties. We make maps derived from twenty variables that may characterize systematics and find the principal components. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. In this work, we analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger datasets from the survey., Comment: 21 pages, 14 figures, 2 tables; accepted to PRD
- Published
- 2015
37. Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data
- Author
-
The DES Collaboration, Bechtol, K., Drlica-Wagner, A., Balbinot, E., Pieres, A., Simon, J. D., Yanny, B., Santiago, B., Wechsler, R. H., Frieman, J., Walker, A. R., Williams, P., Rozo, E., Rykoff, E. S., Queiroz, A., Luque, E., Benoit-Levy, A., Tucker, D., Sevilla, I., Gruendl, R. A., da Costa, L. N., Neto, A. Fausti, Maia, M. A. G., Abbott, T., Allam, S., Armstrong, R., Bauer, A. H., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Castander, F. J., Covarrubias, R., D'Andrea, C. B., DePoy, D. L., Desai, S., Diehl, H. T., Eifler, T. F., Estrada, J., Evrard, A. E., Fernandez, E., Finley, D. A., Flaugher, B., Gaztanaga, E., Gerdes, D., Girardi, L., Gladders, M., Gruen, D., Gutierrez, G., Hao, J., Honscheid, K., Jain, B., James, D., Kent, S., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lin, H., Makler, M., March, M., Marshall, J., Martini, P., Merritt, K. W., Miller, C., Miquel, R., Mohr, J., Neilsen, E., Nichol, R., Nord, B., Ogando, R., Peoples, J., Petravick, D., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, D., Wester, W., and Zuntz, J.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data., Comment: 33 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Readers may be interested in the concurrent work by Koposov, Belokurov, Torrealba, & Evans (http://arxiv.org/abs/1503.02079). Indirect dark matter search results are presented in Drlica-Wagner, Albert, Bechtol, Wood, Strigari, et al. (The LAT and DES Collaborations, http://arxiv.org/abs/1503.02632)
- Published
- 2015
- Full Text
- View/download PDF
38. Dislocation and Grain Size Roles in Physical Mesomechanics
- Author
-
Armstrong, R. W.
- Published
- 2021
- Full Text
- View/download PDF
39. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing
- Author
-
Bonnett, C, Troxel, MA, Hartley, W, Amara, A, Leistedt, B, Becker, MR, Bernstein, GM, Bridle, SL, Bruderer, C, Busha, MT, Carrasco Kind, M, Childress, MJ, Castander, FJ, Chang, C, Crocce, M, Davis, TM, Eifler, TF, Frieman, J, Gangkofner, C, Gaztanaga, E, Glazebrook, K, Gruen, D, Kacprzak, T, King, A, Kwan, J, Lahav, O, Lewis, G, Lidman, C, Lin, H, MacCrann, N, Miquel, R, O'Neill, CR, Palmese, A, Peiris, HV, Refregier, A, Rozo, E, Rykoff, ES, Sadeh, I, Sánchez, C, Sheldon, E, Uddin, S, Wechsler, RH, Zuntz, J, Abbott, T, Abdalla, FB, Allam, S, Armstrong, R, Banerji, M, Bauer, AH, Benoit-Lévy, A, Bertin, E, Brooks, D, Buckley-Geer, E, Burke, DL, Capozzi, D, Carnero Rosell, A, Carretero, J, Cunha, CE, D'Andrea, CB, Da Costa, LN, Depoy, DL, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Fausti Neto, A, Fernandez, E, Flaugher, B, Fosalba, P, Gerdes, DW, Gruendl, RA, Honscheid, K, Jain, B, James, DJ, Jarvis, M, Kim, AG, Kuehn, K, Kuropatkin, N, Li, TS, Lima, M, Maia, MAG, March, M, Marshall, JL, Martini, P, Melchior, P, Miller, CJ, Neilsen, E, Nichol, RC, Nord, B, Ogando, R, Plazas, AA, Reil, K, Romer, AK, Roodman, A, Sako, M, Sanchez, E, Santiago, B, Smith, RC, Soares-Santos, M, and Sobreira, F
- Subjects
astro-ph.CO - Abstract
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods - annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz - are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z's. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72±0.01 over the range 0.3
- Published
- 2016
40. A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226
- Author
-
Cowperthwaite, PS, Berger, E, Soares-Santos, M, Annis, J, Brout, D, Brown, DA, Buckley-Geer, E, Cenko, SB, Chen, HY, Chornock, R, Diehl, HT, Doctor, Z, Drlica-Wagner, A, Drout, MR, Farr, B, Finley, DA, Foley, RJ, Fong, W, Fox, DB, Frieman, J, Garcia-Bellido, J, Gill, MSS, Gruendl, RA, Herner, K, Holz, DE, Kasen, D, Kessler, R, Lin, H, Margutti, R, Marriner, J, Matheson, T, Metzger, BD, Neilsen, EH, Quataert, E, Rest, A, Sako, M, Scolnic, D, Smith, N, Sobreira, F, Strampelli, GM, Villar, VA, Walker, AR, Wester, W, Williams, PKG, Yanny, B, Abbott, TMC, Abdalla, FB, Allam, S, Armstrong, R, Bechtol, K, Benoit-Lévy, A, Bertin, E, Brooks, D, Burke, DL, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, FJ, Cunha, CE, D’Andrea, CB, da Costa, LN, Desai, S, Dietrich, JP, Evrard, AE, Neto, A Fausti, Fosalba, P, Gerdes, DW, Giannantonio, T, Goldstein, DA, Gruen, D, Gutierrez, G, Honscheid, K, James, DJ, Johnson, MWG, Johnson, MD, Krause, E, Kuehn, K, Kuropatkin, N, Lima, M, Maia, MAG, Marshall, JL, Menanteau, F, Miquel, R, Mohr, JJ, Nichol, RC, Nord, B, Ogando, R, Plazas, AA, Reil, K, Romer, AK, Sanchez, E, Scarpine, V, Sevilla-Noarbe, I, Smith, RC, Suchyta, E, Tarle, G, Thomas, D, Thomas, RC, Tucker, DL, and Weller, J
- Subjects
binaries: close ,catalogs ,gravitational waves ,stars: neutron ,surveys ,astro-ph.HE ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics - Abstract
We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg2 of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2-24 days after the GW detection. We achieve point-source limiting magnitudes of and , with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.
- Published
- 2016
41. Cosmology from cosmic shear with Dark Energy Survey Science Verification data
- Author
-
Abbott, T, Abdalla, FB, Allam, S, Amara, A, Annis, J, Armstrong, R, Bacon, D, Banerji, M, Bauer, AH, Baxter, E, Becker, MR, Benoit-Lévy, A, Bernstein, RA, Bernstein, GM, Bertin, E, Blazek, J, Bonnett, C, Bridle, SL, Brooks, D, Bruderer, C, Buckley-Geer, E, Burke, DL, Busha, MT, Capozzi, D, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, FJ, Chang, C, Clampitt, J, Crocce, M, Cunha, CE, D’Andrea, CB, da Costa, LN, Das, R, DePoy, DL, Desai, S, Diehl, HT, Dietrich, JP, Dodelson, S, Doel, P, Drlica-Wagner, A, Efstathiou, G, Eifler, TF, Erickson, B, Estrada, J, Evrard, AE, Neto, A Fausti, Fernandez, E, Finley, DA, Flaugher, B, Fosalba, P, Friedrich, O, Frieman, J, Gangkofner, C, Garcia-Bellido, J, Gaztanaga, E, Gerdes, DW, Gruen, D, Gruendl, RA, Gutierrez, G, Hartley, W, Hirsch, M, Honscheid, K, Huff, EM, Jain, B, James, DJ, Jarvis, M, Kacprzak, T, Kent, S, Kirk, D, Krause, E, Kravtsov, A, Kuehn, K, Kuropatkin, N, Kwan, J, Lahav, O, Leistedt, B, Li, TS, Lima, M, Lin, H, MacCrann, N, March, M, Marshall, JL, Martini, P, McMahon, RG, Melchior, P, Miller, CJ, Miquel, R, Mohr, JJ, Neilsen, E, Nichol, RC, Nicola, A, Nord, B, Ogando, R, Palmese, A, Peiris, HV, Plazas, AA, Refregier, A, and Roe, N
- Subjects
Particle and High Energy Physics ,Physical Sciences ,astro-ph.CO ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Mathematical physics ,Astronomical sciences ,Particle and high energy physics - Abstract
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ8(Ωm/0.3)0.5=0.81±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ∼30% larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ8(Ωm/0.3)0.5 is present regardless of the value of w.
- Published
- 2016
42. A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914
- Author
-
Soares-Santos, M, Kessler, R, Berger, E, Annis, J, Brout, D, Buckley-Geer, E, Chen, H, Cowperthwaite, PS, Diehl, HT, Doctor, Z, Drlica-Wagner, A, Farr, B, Finley, DA, Flaugher, B, Foley, RJ, Frieman, J, Gruendl, RA, Herner, K, Holz, D, Lin, H, Marriner, J, Neilsen, E, Rest, A, Sako, M, Scolnic, D, Sobreira, F, Walker, AR, Wester, W, Yanny, B, Abbott, TMC, Abdalla, FB, Allam, S, Armstrong, R, Banerji, M, Benoit-Levy, A, Bernstein, RA, Bertin, E, Brown, DA, Burke, DL, Capozzi, D, Carnero Rosell, A, Carrasco Kind, M, Carretero, J, Castander, FJ, Cenko, SB, Chornock, R, Crocce, M, D'Andrea, CB, da Costa, LN, Desai, S, Dietrich, JP, Drout, MR, Eifler, TF, Estrada, J, Evrard, AE, Fairhurst, S, Fernandez, E, Fischer, J, Fong, W, Fosalba, P, Fox, DB, Fryer, CL, Garcia-Bellido, J, Gaztanaga, E, Gerdes, DW, Goldstein, DA, Gruen, D, Gutierrez, G, Honscheid, K, James, DJ, Karliner, I, Kasen, D, Kent, S, Kuropatkin, N, Kuehn, K, Lahav, O, Li, TS, Lima, M, Maia, MAG, Margutti, R, Martini, P, Matheson, T, McMahon, RG, Metzger, BD, Miller, CJ, Miquel, R, Mohr, JJ, Nichol, RC, Nord, B, Ogando, R, Peoples, J, Plazas, AA, Quataert, E, Romer, AK, Roodman, A, Rykoff, ES, Sanchez, E, Scarpine, V, Schindler, R, and Schubnell, M
- Subjects
binaries: close ,catalogs ,gravitational waves ,stars: neutron ,surveys ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Published
- 2016
43. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data
- Author
-
Melchior, P., Suchyta, E., Huff, E., Hirsch, M., Kacprzak, T., Rykoff, E., Gruen, D., Armstrong, R., Bacon, D., Bechtol, K., Bernstein, G. M., Bridle, S., Clampitt, J., Honscheid, K., Jain, B., Jouvel, S., Krause, E., Lin, H., MacCrann, N., Patton, K., Plazas, A., Rowe, B., Vikram, V., Wilcox, H., Young, J., Zuntz, J., Abbott, T., Abdalla, F. B., Allam, S. S., Banerji, M., Bernstein, J. P., Bernstein, R. A., Bertin, E., Buckley-Geer, E., Burke, D. L., Castander, F. J., da Costa, L. N., Cunha, C. E., Depoy, D. L., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Neto, A. Fausti, Fernandez, E., Finley, D. A., Flaugher, B., Frieman, J. A., Gaztanaga, E., Gerdes, D., Gruendl, R. A., Gutierrez, G. R., Jarvis, M., Karliner, I., Kent, S., Kuehn, K., Kuropatkin, N., Lahav, O., Maia, M. A. G., Makler, M., Marriner, J., Marshall, J. L., Merritt, K. W., Miller, C. J., Miquel, R., Mohr, J., Neilsen, E., Nichol, R. C., Nord, B. D., Reil, K., Roe, N. A., Roodman, A., Sako, M., Sanchez, E., Santiago, B. X., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, C., Soares-Santos, M., Swanson, M. E. C., Sypniewski, A. J., Tarle, G., Thaler, J., Thomas, D., Tucker, D. L., Walker, A., Wechsler, R., Weller, J., and Wester, W.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky., Comment: accepted by MNRAS; high-resolution versions of figures can be downloaded from https://www.physics.ohio-state.edu/~melchior.12/research/des_sv_clusters.html
- Published
- 2014
- Full Text
- View/download PDF
44. Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals
- Author
-
Wijdenes, P., Haider, K., Gavrilovici, C., Gunning, B., Wolff, M. D., Lijnse, T., Armstrong, R., Teskey, G. C., Rho, J. M., Dalton, C., and Syed, Naweed I.
- Published
- 2021
- Full Text
- View/download PDF
45. Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey
- Author
-
Ruel, J., Bazin, G., Bayliss, M., Brodwin, M., Foley, R. J., Stalder, B., Aird, K. A., Armstrong, R., Ashby, M. L. N., Bautz, M., Benson, B. A., Bleem, L. E., Bocquet, S., Carlstrom, J. E., Chang, C. L., Chapman, S. C., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Desai, S., Dobbs, M. A., Dudley, J. P., Forman, W. R., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Harrington, N. L., High, F. W., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Jones, C., Joy, M., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Mehl, J., Meyer, S. S., Mocanu, L., Mohr, J. J., Montroy, T. E., Murray, S. S., Natoli, T., Nurgaliev, D., Padin, S., Plagge, T., Pryke, C., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shaw, L., Shirokoff, E., Song, J., Šuhada, R., Spieler, H. G., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K., Stubbs, C. W., van Engelen, A., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zahn, O., and Zenteno, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of $61$ spectroscopic cluster redshifts, and $48$ velocity dispersions each calculated with more than $15$ member galaxies. This catalog also includes $19$ dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies ($\lesssim 30$), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a $\sim$30% log-normal scatter in dispersion at fixed mass, and a $\sim$10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty., Comment: Accepted to ApJ. 20 pages, 6 figures
- Published
- 2013
- Full Text
- View/download PDF
46. The evolving polarised jet of black hole candidate Swift J1745-26
- Author
-
Curran, P. A., Coriat, M., Miller-Jones, J. C. A., Armstrong, R. P., Edwards, P. G., Sivakoff, G. R., Woudt, P., Altamirano, D., Belloni, T. M., Corbel, S., Fender, R. P., Kording, E. G., Krimm, H. A., Markoff, S., Migliari, S., Russell, D. M., Stevens, J., and Tzioumis, T.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio--X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (~50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta -- the first time such a discrete ejection has been observed in a failed outburst -- and may imply a complex magnetic field geometry., Comment: Accepted for publication in MNRAS (16 pages; 5 figures; 2 tables, including online data)
- Published
- 2013
- Full Text
- View/download PDF
47. A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7
- Author
-
Armstrong, R. P., Fender, R. P., Nicolson, G. D., Ratcliffe, S., Linares, M., Horrell, J., Richter, L., Schurch, M. P. E., Coriat, M., Woudt, P., Jonas, J., Booth, R., and Fanaroff, B.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ~17-day timescale. A longer-term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys during the years 1994 to 2007. Here we report first observations of this source with the MeerKAT test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array (SKA), demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 13 December 2011 to 16 January 2012 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from MAXI. We discuss whether the overall modulation and recent dramatic brightening is likely to be due to an increase in the power of the jet due to changes in accretion rate or changing Doppler boosting associated with a varying angle to the line of sight., Comment: 7 pages, 5 figures, accepted for publication in MNRAS 14 May 2013
- Published
- 2013
- Full Text
- View/download PDF
48. Redshifts, Sample Purity, and BCG Positions for the Galaxy Cluster Catalog from the first 720 Square Degrees of the South Pole Telescope Survey
- Author
-
Song, J., Zenteno, A., Stalder, B., Desai, S., Bleem, L. E., Aird, K. A., Armstrong, R., Ashby, M. L. N., Bayliss, M., Bazin, G., Benson, B. A., Bertin, E., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Dudley, J. P., Foley, R. J., George, E. M., Gettings, D., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Harrington, N. L., High, F. W., Holder, G. P., Holzapfel, W. L., Hoover, S., Hrubes, J. D., Joy, M., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Marrone, D. P., McDonald, M., McMahon, J. J., Mehl, J., Meyer, S. S., Mocanu, L., Mohr, J. J., Montroy, T. E., Natoli, T., Nurgaliev, D., Padin, S., Plagge, T., Pryke, C., Reichardt, C. L., Rest, A., Ruel, J., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shaw, L., Shirokoff, E., Suhada, R., Spieler, H. G., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K., Stubbs, C. W., van Engelen, A., Vanderlinde, K., Vieira, J. D., Williamson, R., and Zahn, O.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg^2 of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of \Delta z/(1+z)=0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z=1.35 with a median of z_{med}=0.57. Approximately 18% of the sample with measured redshifts lies at z>0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance \xi>5 (\xi>4.5) is >= 95 (>= 70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers than X-ray-selected cluster samples., Comment: 22 pages, 7 figures, 1 multi-page table at the end of the article
- Published
- 2012
- Full Text
- View/download PDF
49. SPT-CL J0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel'dovich Effect Survey
- Author
-
Stalder, B., Ruel, J., Suhada, R., Brodwin, M., Aird, K. A., Andersson, K., Armstrong, R., Ashby, M. L. N., Bautz, M., Bayliss, M., Bazin, G., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Desai, S., Dobbs, M. A., Dudley, J. P., Foley, R. J., Forman, W. R., George, E. M., Gettings, D., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Harrington, N. L., High, F. W., Holder, G. P., Holzapfel, W. L., Hoover, S., Hrubes, J. D., Jones, C., Joy, M., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Mehl, J., Meyer, S. S., Mocanu, L., Mohr, J. J., Montroy, T. E., Murray, S. S., Natoli, T., Nurgaliev, D., Padin, S., Plagge, T., Pryke, C., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shaw, L., Shirokoff, E., Song, J., Spieler, H. G., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K., Stubbs, C. W., van Engelen, A., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zahn, O., and Zenteno, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically-confirmed redshift, z=1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of Tx=8.7keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich derived mass. The combined SZ and X-ray mass estimate of M500=(4.9+/-0.8)e14 h_{70}^{-1} Msun makes it the most massive known SZ-selected galaxy cluster at z>1.2 and the second most massive at z>1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages >3 Gyr, and low rates of star formation (<0.5Msun/yr). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat LambdaCDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg^2 SPT-SZ survey is 69%., Comment: 11 pages, 5 figures, submitted to ApJ
- Published
- 2012
- Full Text
- View/download PDF
50. Weak-Lensing Mass Measurements of Five Galaxy Clusters in the South Pole Telescope Survey Using Magellan/Megacam
- Author
-
High, F. W., Hoekstra, H., Leethochawalit, N., de Haan, T., Abramson, L., Aird, K. A., Armstrong, R., Ashby, M. L. N., Bautz, M., Bayliss, M., Bazin, G., Benson, B. A., Bleem, L. E., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Conroy, M., Crawford, T. M., Crites, A. T., Desai, S., Dobbs, M. A., Dudley, J. P., Foley, R. J., Forman, W. R., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Harrington, N. L., Holder, G. P., Holzapfel, W. L., Hoover, S., Hrubes, J. D., Jones, C., Joy, M., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Mehl, J., Meyer, S. S., Mocanu, L., Mohr, J. J., Montroy, T. E., Murray, S. S., Natoli, T., Nurgaliev, D., Padin, S., Plagge, T., Pryke, C., Reichardt, C. L., Rest, A., Ruel, J., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shaw, L., Schrabback, T., Shirokoff, E., Song, J., Spieler, H. G., Stalder, B., Staniszewski, Z., Stark, A. A., Story, K., Stubbs, C. W., Suhada, R., Tokarz, S., van Engelen, A., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zahn, O., and Zenteno, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We use weak gravitational lensing to measure the masses of five galaxy clusters selected from the South Pole Telescope (SPT) survey, with the primary goal of comparing these with the SPT Sunyaev--Zel'dovich (SZ) and X-ray based mass estimates. The clusters span redshifts 0.28 < z < 0.43 and have masses M_500 > 2 x 10^14 h^-1 M_sun, and three of the five clusters were discovered by the SPT survey. We observed the clusters in the g'r'i' passbands with the Megacam imager on the Magellan Clay 6.5m telescope. We measure a mean ratio of weak lensing (WL) aperture masses to inferred aperture masses from the SZ data, both within an aperture of R_500,SZ derived from the SZ mass, of 1.04 +/- 0.18. We measure a mean ratio of spherical WL masses evaluated at R_500,SZ to spherical SZ masses of 1.07 +/- 0.18, and a mean ratio of spherical WL masses evaluated at R_500,WL to spherical SZ masses of 1.10 +/- 0.24. We explore potential sources of systematic error in the mass comparisons and conclude that all are subdominant to the statistical uncertainty, with dominant terms being cluster concentration uncertainty and N-body simulation calibration bias. Expanding the sample of SPT clusters with WL observations has the potential to significantly improve the SPT cluster mass calibration and the resulting cosmological constraints from the SPT cluster survey. These are the first WL detections using Megacam on the Magellan Clay telescope., Comment: Main body: 18 pages, 7 figures, 6 tables. Appendix: 6 pages, 10 figures. Accepted by ApJ. New version incorporates changes from accepted article
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.