3 results on '"Nicolas Seguin"'
Search Results
2. ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS
- Author
-
Julien Vovelle, Nicolas Seguin, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan [Villeurbanne] (ICJ), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Conservation law ,Finite volume method ,Applied Mathematics ,Numerical analysis ,discontinuous coefficient ,Mathematical analysis ,Godunov's scheme ,010103 numerical & computational mathematics ,01 natural sciences ,Nonlinear conservation law ,010101 applied mathematics ,resonance ,Modeling and Simulation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,finite volume ,Entropy (arrow of time) ,Stationary state ,Mathematics - Abstract
We study here a model of conservative nonlinear conservation law with a flux function with discontinuous coefficients, namely the equation ut + (k(x)u(1 - u))x = 0. It is a particular entropy condition on the line of discontinuity of the coefficient k which ensures the uniqueness of the entropy solution. This condition is discussed and justified. On the other hand, we perform a numerical analysis of the problem. Two finite volume schemes, the Godunov scheme and the VFRoe-ncv scheme, are proposed to simulate the conservation law. They are compared with two finite volume methods classically used in an industrial context. Several tests confirm the good behavior of both new schemes, especially through the discontinuity of permeability k (whereas a loss of accuracy may be detected when industrial methods are performed). Moreover, a modified MUSCL method which accounts for stationary states is introduced.
- Published
- 2003
- Full Text
- View/download PDF
3. RELAXATION OF FLUID SYSTEMS
- Author
-
Nicolas Seguin, Edwige Godlewski, Frédéric Coquel, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and LRC Manon (Laboratoire de recherche conventionné -- CEA/DM2S-LJLL -- Modélisation et approximation numérique orientées pour l'énergie nucléaire)
- Subjects
010103 numerical & computational mathematics ,01 natural sciences ,Godunov-type scheme ,symbols.namesake ,finite volume scheme ,Hyperbolic system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Applied mathematics ,fluid model ,0101 mathematics ,Mathematics ,Applied Mathematics ,Numerical analysis ,Degenerate energy levels ,Mathematical analysis ,Godunov's scheme ,relaxation approximation ,Solver ,16. Peace & justice ,010101 applied mathematics ,Riemann problem ,Lagrangian relaxation ,Modeling and Simulation ,symbols ,Euler's formula ,Relaxation (approximation) ,AMSC: 35L60, 65M08, 76M12, 35B25, 35Q35 ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We propose a relaxation framework for general fluid models which can be understood as a natural ex- tension of the Suliciu approach in the Euler setting. In particular, the relaxation system may be totally degenerate. Several stability properties are proved. The relaxation procedure is shown to be efficient in the numerical approximation of the entropy weak solutions of the original PDEs. The numerical method is particularly simple in the case of a fully degenerate relaxation system for which the solution of the Riemann problem is explicit. Indeed, the Godunov solver for the homogeneous relaxation system results in an HLLC-type solver for the equilibirum model. Discrete entropy inequalities are established under a natural Gibbs principle.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.