1. Promoting WLED-Excited High Temperature Long Afterglow by Orthogonally Anchoring Chromophores into 0D Metal-Organic Cages.
- Author
-
Wang ZH, Liu CH, Zheng L, Sun HL, Guan SQ, Cao ZM, Pan M, and Su CY
- Abstract
Afterglow materials have garnered significant interest due to distinct photophysical characteristics. However, it is still difficult to achieve long afterglow phosphorescence from organic molecules due to aggregation-caused quenching (ACQ) and energy dissipation. In addition, most materials reported so far have long afterglow emission only at room or even low temperatures, and mainly use UV light as an excitation source. In this work, we report a strategy to achieve high temperature long afterglow emission through the assembly of isolated 0D metal-organic cages (MOCs). In which, both ACQ and phosphorescence quenching effects are effectively mitigated by altering the stacking mode of organic chromophores through orthogonally anchoring into the edges of cubic MOCs. Furthermore, improvement in molecular rigidity, promotion of spin-orbit coupling and broadening of the absorption range are achieved through the MOC-engineering strategy. As a result, we successfully synthesized MOCs that can produce afterglow emission even after excitation by WLEDs at high temperatures (380 K). Moreover, the MOCs are capable of generating afterglow emissions when excited by mobile phone flashlight at room temperature. Given these features, the potential applications of MOCs in the visual identification of explosives, information encryption and multicolor display are explored., (© 2024 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF