1. Overcoming Barriers Associated with Oral Delivery of Differently Sized Fluorescent Core-Shell Silica Nanoparticles.
- Author
-
Erstling JA, Bag N, Gardinier TC, Kohle FFE, DomNwachukwu N, Butler SD, Kao T, Ma K, Turker MZ, Feuer GB, Lee R, Naguib N, Tallman JF, Malarkey HF, Tsaur L, Moore WL, Chapman DV, Aubert T, Mehta S, Cerione RA, Weiss RS, Baird BA, and Wiesner UB
- Subjects
- Humans, Rats, Mice, Animals, Caco-2 Cells, Rats, Sprague-Dawley, Silicon Dioxide chemistry, Drug Carriers chemistry, Nanoparticles chemistry
- Abstract
Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF