1. Diverse N-Oxidation of Primary Aromatic Amines Controlled by Engineered P450 Peroxizyme Variants Facilitated by Dual-Functional Small Molecule.
- Author
-
Chen J, Yao F, Jiang Y, Qin X, Xian M, Feng Y, and Cong Z
- Abstract
Amine oxidation is an important organic reaction for the production of high-value N-containing compounds. However, it is still challenging to control the reactivity of active N-centered radicals to selectively access N-oxidation products. Herein, this study reports the engineering of cytochrome P450BM3 into multifunctional N-oxidizing enzymes with the assistance of dual-functional small molecules (DFSM) to selectively produce N-oxygenation (i.e., p-nitrosobenzene, p-nitrobenzene, and azoxybenzene) and one-electron oxidation products (i.e., oligomeric quinones and azobenzene) from aromatic amines. The best mutant, F87A/T268V/V78T/A82T, exclusively gives p-nitrosobenzene (up to 98% selectivity), whereas the selectivity for p-nitrobenzene is >99% using the mutant F87A/T268V/A82T/I263L. Crystal structure analysis reveals that key mutations and DFSM exert synergistic effects on catalytic promiscuity by controlling the substrate orientation in active center. This study highlights the potential of DFSM-facilitated P450 peroxygenase and peroxidase for the synthesis of N-containing compounds via the controllable oxidation of aromatic amines, substantially expanding the chemical space of P450 enzymes., (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF