1. Unlocking the Power of Human Ferritin: Enhanced Drug Delivery of Aurothiomalate in A2780 Ovarian Cancer Cells.
- Author
-
Cosottini L, Geri A, Ghini V, Mannelli M, Zineddu S, Di Paco G, Giachetti A, Massai L, Severi M, Gamberi T, Rosato A, Turano P, and Messori L
- Subjects
- Humans, Female, Cell Line, Tumor, Drug Screening Assays, Antitumor, Drug Delivery Systems, Cell Proliferation drug effects, Apoferritins chemistry, Apoferritins metabolism, Molecular Structure, Molecular Dynamics Simulation, Cell Survival drug effects, Antineoplastic Agents pharmacology, Antineoplastic Agents chemistry, Ferritins chemistry, Ferritins metabolism, Ovarian Neoplasms drug therapy, Ovarian Neoplasms metabolism, Ovarian Neoplasms pathology
- Abstract
Aurothiomalate (AuTM) is an FDA-approved antiarthritic gold drug with unique anticancer properties. To enhance its anticancer activity, we prepared a bioconjugate with human apoferritin (HuHf) by attaching some AuTM moieties to surface protein residues. The reaction of apoferritin with excess AuTM yielded a single adduct, that was characterized by ESI MS and ICP-OES analysis, using three mutant ferritins and trypsinization experiments. The adduct contains ~3 gold atoms per ferritin subunit, arranged in a small cluster bound to Cys90 and Cys102. MD simulations provided a plausible structural model for the cluster. The adduct was evaluated for its pharmacological properties and was found to be significantly more cytotoxic than free AuTM against A2780 cancer cells mainly due to higher gold uptake. NMR-metabolomics showed that AuTM bound to HuHf and free AuTM induced qualitatively similar changes in treated cancer cells, indicating that the effects on cell metabolism are approximately the same, in agreement with independent biochemical experiments. In conclusion, we have demonstrated here that a molecularly precise bioconjugate formed between AuTM and HuHf exhibits anticancer properties far superior to the free drug, while retaining its key mechanistic features. Evidence is provided that human ferritin can serve as an excellent carrier for this metallodrug., (© 2024 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF