1. Controlled Electronic and Magnetic Landscape in Self-Assembled Complex Oxide Heterostructures.
- Author
-
Park DS, Rata AD, Dahm RT, Chu K, Gan Y, Maznichenko I, Ostanin S, Trier F, Baik H, Choi WS, Choi CJ, Kim YH, Rees GJ, Gíslason HP, Buczek PA, Mertig I, Ionescu MA, Ernst A, Dörr K, Muralt P, and Pryds N
- Abstract
Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth. In this work, the two-phase nanocomposite thin films are based on LaAlO
3 :LaBO3 , grown on a lattice-mismatched SrTiO3001 (001) single crystal. The 2D-to-3D transient structural assembly is primarily controlled by the composition ratio, leading to the coexistence of multiple interfacial properties, 2D electron gas, and magnetic anisotropy. This approach provides multidimensional film heterostructures which enrich the emergent phenomena for multifunctional applications., (© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF