1. Transformer Connections: Improving Segmentation in Blurred Near‐Infrared Blood Vessel Image in Different Depth.
- Author
-
Wang, Jiazhe, Shimizu, Koichi, and Yoshie, Osamu
- Subjects
- *
CONVOLUTIONAL neural networks , *TRANSFORMER models , *ARTIFICIAL intelligence , *DEEP learning , *IMAGE segmentation , *RETINAL blood vessels - Abstract
High‐fidelity segmentation of blood vessels plays a pivotal role in numerous biomedical applications, such as injection assistance, cancer detection, various surgeries, and vein authentication. Near‐infrared (NIR) transillumination imaging is an effective and safe method to visualize the subcutaneous blood vessel network. However, such images are severely blurred because of the light scattering in body tissues. Inspired by the Vision Transformer model, this paper proposes a novel deep learning network known as transformer connection (TRC)‐Unet to capture global blurred and local clear correlations while using multi‐layer attention. Our method mainly consists of two blocks, thereby aiming to remap skip connection information flow and fuse different domain features. Specifically, the TRC extracts global blurred information from multiple layers and suppresses scattering to increase the clarity of vessel features. Transformer feature fusion eliminates the domain gap between the highly semantic feature maps of the convolutional neural network backbone and the adaptive self‐attention maps of TRCs. Benefiting from the long‐range dependencies of transformers, we achieved competitive results in relation to various competing methods on different data sets, including retinal vessel segmentation, simulated blur image segmentation, and real NIR blood vessel image segmentation. Moreover, our method remarkably improved the segmentation results of simulated blur image data sets and a real NIR vessel image data set. The quantitative results of ablation studies and visualizations are also reported to demonstrate the superiority of the TRC‐Unet design. © 2024 The Author(s). IEEJ Transactions on Electrical and Electronic Engineering published by Institute of Electrical Engineers of Japan and Wiley Periodicals LLC. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF