1. 1,4-Bis[2-(4-ferrocenylphenyl)ethynyl]anthraquinone from synchrotron X-ray powder diffraction.
- Author
-
Sachiko, Maki, Nishibori, Eiji, Aoyagi, Shinobu, Sakata, Makoto, Takata, Masaki, Kondo, Mio, Murata, Masaki, Sakamoto, Ryota, and Nishihara, Hiroshi
- Subjects
CRYSTALLOGRAPHY ,POROUS materials ,CRYSTAL structure ,MAXIMUM entropy method ,RIETVELD refinement ,MATHEMATICAL models - Abstract
The title compound, [Fe
2 (C5 H5 )2 (C40 H22 O2 )] or 1,4-(FcPh)2 Aq [where FcPh is 2-(4-ferrocenylphenyl)ethynyl and Aq is anthraquinone], was synthesized in an attempt to obtain a new solvent-incorporating porous material with a large void space. Thermodynamic data for 1,4-(FcPh)2 Aq show a phase transition at approximately 430 K. The crystal structure of solvent-free 1,4-(FcPh)2 Aq was determined at temperatures of 90, 300 and 500 K using synchrotron powder diffraction data. A direct-space method using a genetic algorithm was employed for structure solution. Charge densities calculated from observed structure factors by the maximum entropy method were employed for model improvement. The final models were obtained through multistage Rietveld refinements. In both phases, the structures of which differ only subtly, the planar Aq fragments are stacked alternately in opposite orientations, forming a one-dimensional column. The FcPh arms lie between the stacks and fill the remaining space, leaving no voids. C-H...π interactions between the Ph and Fc fragments mediate crystal packing and stabilization. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF