1. Stabilization of cyclohexanone monooxygenase by computational and experimental library design
- Author
-
Marco W. Fraaije, Maximilian J. L. J. Fürst, Selle Bandstra, Marjon Boonstra, and Biotechnology
- Subjects
Biocatalysis, Protein Engineering and Nanobiotechnology ,computational design ,Cyclohexanone ,Bioengineering ,ALCOHOL ,Baeyer–Villiger monooxygenase ,010402 general chemistry ,01 natural sciences ,Applied Microbiology and Biotechnology ,Article ,Catalysis ,ARTICLES ,03 medical and health sciences ,chemistry.chemical_compound ,Bacterial Proteins ,Peptide Library ,BAEYER-VILLIGER-MONOOXYGENASES ,Enzyme Stability ,Rhodococcus ,CRYSTAL-STRUCTURE ,030304 developmental biology ,Phenylacetone monooxygenase ,Thermostability ,chemistry.chemical_classification ,0303 health sciences ,CATALYST ,STABILITY ,Chemistry ,MUTATIONS ,Computational Biology ,Substrate (chemistry) ,Regioselectivity ,Combinatorial chemistry ,thermostability ,0104 chemical sciences ,stabilization ,Enzyme ,Biocatalysis ,Mutation ,Oxygenases ,cyclohexanone ,ENZYMES ,Biotechnology ,PHENYLACETONE MONOOXYGENASE - Abstract
Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature‐sensitive enzymes catalyzing the Baeyer–Villiger reaction, which display excellent stereo‐ and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI‐31, a substrate‐promiscuous enzyme that efficiently catalyzes the production of the nylon‐6 precursor ε‐caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein‐stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half‐life at 30°C. In contrast to the wild‐type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications., This work describes the stabilization of an e‐caprolactone‐producing cyclohexanone monooxygenase through protein engineering. Applying a computational pipeline for predicting stabilizing point mutations and an innovative shuffled library strategy for their combination, the authors report an increase of 13 °C of the melting temperature of the notoriously unstable enzyme, while the half‐life improved 33‐fold.
- Published
- 2019