Yeomans, Larisa, Muthu, Dhanasekaran, Lowery, John J., Martinez, Heather N., Abrell, Leif, Lin, Guanxin, Strom, Kyle, Knapp, Brian I., Bidlack, Jean M., Bilsky, Edward J., and Polt, Robin
Phosphorylation of l-serine-containing enkephalin analogs has been explored as an alternative to glycosylation in an effort to increase blood-brain barrier permeability and CNS bioavailability of peptide pharmacophores. Two enkephalin-based peptides were modified for these studies, a set related to DTLES, a mixed μ/δ-agonist, and one related to DAMGO, a highly selective μ-agonist. Each unglycosylated peptide was compared to its phosphate, its mono-benzylphosphate ester, and its β- d-glucoside. Binding was characterized in membrane preparations from Chinese hamster ovary cells expressing human μ, δ and κ-opiate receptors. Antinociception was measured in mice using the 55 °C tail-flick assay. To estimate bioavailability, the antinociceptive effect of each opioid agonist was evaluated after intracerebroventricular (i.c.v.) or intravenous administration (i.v.) of the peptides. Circular dichroism methods and high-field nuclear magnetic resonance were used in the presence and absence of sodium dodecylsulfate to understand how the presence of a membrane might influence the peptide conformations. [ABSTRACT FROM AUTHOR]