1. High‐resolution macromolecular crystallography at the FemtoMAX beamline with time‐over‐threshold photon detection.
- Author
-
Jensen, Maja, Ahlberg Gagnér, Viktor, Cabello Sánchez, Juan, Bengtsson, Åsa U. J., Ekström, J. Carl, Björg Úlfarsdóttir, Tinna, Garcia-Bonete, Maria-Jose, Jurgilaitis, Andrius, Kroon, David, Pham, Van-Thai, Checcia, Stefano, Coudert-Alteirac, Hélène, Schewa, Siawosch, Rössle, Manfred, Rodilla, Helena, Stake, Jan, Zhaunerchyk, Vitali, Larsson, Jörgen, and Katona, Gergely
- Subjects
PROTEIN fractionation ,CRYSTALLOGRAPHY ,FREE electron lasers ,PHOTONS ,X-ray lasers ,FEMTOSECOND pulses - Abstract
Protein dynamics contribute to protein function on different time scales. Ultrafast X‐ray diffraction snapshots can visualize the location and amplitude of atom displacements after perturbation. Since amplitudes of ultrafast motions are small, high‐quality X‐ray diffraction data is necessary for detection. Diffraction from bovine trypsin crystals using single femtosecond X‐ray pulses was recorded at FemtoMAX, which is a versatile beamline of the MAX IV synchrotron. The time‐over‐threshold detection made it possible that single photons are distinguishable even under short‐pulse low‐repetition‐rate conditions. The diffraction data quality from FemtoMAX beamline enables atomic resolution investigation of protein structures. This evaluation is based on the shape of the Wilson plot, cumulative intensity distribution compared with theoretical distribution, I/σ, Rmerge/Rmeas and CC1/2 statistics versus resolution. The FemtoMAX beamline provides an interesting alternative to X‐ray free‐electron lasers when studying reversible processes in protein crystals. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF