Hogfish, Lachnolaimus maximus (Walbaum), have multiple traits that confound measuring reproductive potential: they are protogynous, relatively long-lived harem-forming fish that spawn daily for months. Additionally, recent evidence demonstrates that size, age and timing of sex change vary on a spatial scale within the study area (West Florida shelf, USA). This study investigates the effect of this spatial variation on hogfish reproductive potential by evaluating spawning seasonality, spawning frequency and batch fecundity using an indeterminate egg production model. Offshore females were larger than nearshore females, and batch fecundity was related in a log-linear manner to female size. Gonad histology demonstrated a more protracted reproductive period for females offshore (8 months) than nearshore (4 months). Spatial variations in size coincide with ontogeny because hogfish move offshore with growth; however, even after accounting for fish size, offshore females spawned more. In areas where male removal rates are elevated, spawning harems are disrupted; thus, greater fishing effort nearshore may further reduce the reproductive potential of these females. These nearshore and offshore spawning components of the population are not genetically distinct, but instead represent two contingent spawning strategies that likely enhance total population stability and resilience of this stock in the eastern Gulf of Mexico.