1. Development of organic redox‐active materials in aqueous flow batteries: Current strategies and future perspectives
- Author
-
Mingguang Pan, Minhua Shao, and Zhong Jin
- Subjects
aqueous redox flow batteries ,grid energy storage ,molecular engineering strategies ,organic redox‐active materials ,redox reaction mechanisms ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Abstract Aqueous redox flow batteries, by using redox‐active molecules dissolved in nonflammable water solutions as electrolytes, are a promising technology for grid‐scale energy storage. Organic redox‐active materials offer a new opportunity for the construction of advanced flow batteries due to their advantages of potentially low cost, extensive structural diversity, tunable electrochemical properties, and high natural abundance. In this review, we present the emergence and development of organic redox‐active materials for aqueous organic redox flow batteries (AORFBs), in particular, molecular engineering concepts and strategies of organic redox‐active molecules. The typical design strategies based on organic redox species for high‐capacity, high‐stability, and high‐voltage AORFBs are outlined and discussed. Molecular engineering of organic redox‐active molecules for high aqueous solubility, high chemical/electrochemical stability, and multiple electron numbers as well as satisfactory redox potential gap between the redox pair is essential to realizing high‐performance AORFBs. Beyond molecular engineering, the redox‐targeting strategy is an effective way to obtain high‐capacity AORFBs. We further discuss and analyze the redox reaction mechanisms of organic redox species based on a series of electrochemical and spectroscopic approaches, and succinctly summarize the capacity degradation mechanisms of AORFBs. Furthermore, the current challenges, opportunities, and future directions of organic redox‐active materials for AORFBs are presented in detail.
- Published
- 2023
- Full Text
- View/download PDF