The partition of n-butanol in Winsor type III (W-III) microemulsions was investigated in this work. Three kinds of anionic surfactants (sodium dodecyl sulfate (SDS), sodium dodecyl sulfonate (DSS), and sodium dodecyl benzene sulfonate (SDBS)) and two kinds of anionic/cationic surfactant mixtures (SDS/octadecyl trimethyl ammonium chloride (OTAC) mixtures and DSS/OTAC mixtures) were studied. Internal standard gas chromatography was employed in n-butanol content analysis. The results showed that no water exists in the excess oil (EO) phase and no oil exists in the excess water (EW) phase. For the W-III microemulsions obtained by salinity scanning, relatively constant n-butanol content in the EO (11–12 v%) and EW (1–4 v%) was found under different salinities. Accurate measurement of n-butanol content in each phase is important for those systems having low solubilization ability. For the W-III microemulsions prepared using SDS/OTAC surfactant mixture, the percentage of n-butanol distributed into the interfacial layer decreased while the fraction of n-butanol in the interfacial layer first increased sharply and then tended to be stable with the addition of n-butanol. For the different optimum W-III microemulsion systems tested, most of the surfactant-to-alcohol molar ratio data are near 1:3, but obvious deviation could be observed for some data. On the basis of the accurate measurement of n-butanol content in the EO and EW phases, the standard free energy, ΔG in (T = 298.15 K) of n-butanol transferring from the EO phase to the interfacial region was calculated. The results show negative ΔG in values. For microemulsions with the same components, n-butanol content is an important factor influencing the ΔG in value, and a high absolute value of ΔG in leads to high solubilization ability.