BACKGROUND: In patients with advanced lung cancer, overall survival is largely influenced by progression status. Because progression-free survival (PFS)-based endpoints are controversial, the authors evaluated the impact of the progression date (PD) determination approach on PFS estimates. METHODS: Individual patient data from 21 trials (14 North Central Cancer Treatment Group trials and 7 Southwest Oncology Group trials) were used. The reported PD (RPD) was defined as either the radiographic scan date or the clinical deterioration date. PD was determined using Method 1 (M1), the RPD; M2, 1 day after the last progression-free scan; M3, midpoint between the last progression-free scan and the RPD; and M4, an interval-censoring approach. PFS was estimated using Kaplan-Meier (M1-M3), and maximum-likelihood (M4) methods. Simulation studies were performed to understand the impact of the length of time elapsed between the last progression-free scan and the PD on time-to-progression estimates. RESULTS: PFS estimates using the RPD were the highest, and M2 was the most conservative. M3 and M4 were similar because the majority of progressions occurred during treatment (ie, frequent disease assessments). M3 was influenced less by the length of the assessment schedules (percentage difference from the true time-to-progression