1. Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
- Author
-
Masahito Ueyama, Sara H. Knox, Kyle B. Delwiche, Sheel Bansal, William J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, Karina Schafer, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, Eugénie S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs, Osaka Metropolitan University, University of British Columbia [Vancouver], Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Department of Environmental Science, Policy, and Management [Berkeley] (ESPM), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), US Geological Survey [Jamestown], United States Geological Survey [Reston] (USGS), Prairie and Northern Wildlife Research Centre, Environment and Climate Change Canada, Climate and Ecosystem Sciences Division, Research Faculty of Agriculture, Hokkaido University [Sapporo, Japan], University of Illinois [Chicago] (UIC), University of Illinois System, Department of Earth and Environmental Sciences [Chicago] (EAES), University of Illinois System-University of Illinois System, Rutgers University [Newark], Rutgers University System (Rutgers), Department of Earth and Environmental Science [Newark], Rutgers University System (Rutgers)-Rutgers University System (Rutgers), US Geological Survey [Menlo Park], NASA Goddard Space Flight Center (GSFC), Biospheric Sciences Laboratory, Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, Stanford University, Michigan State University System, University of Wisconsin-Madison, Department of Atmospheric and Oceanic Sciences [Madison], Université de Rennes (UR), Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Shinshu University [Nagano], National Center for Agro-Meteorology, Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Université de Montréal (UdeM), University of Eastern Finland, School of Forest Sciences, Seoul National University [Seoul] (SNU), Department of Landscape Architecture and Rural Systems Engineering, Institute of Arctic Biology, University of Alaska [Fairbanks] (UAF), Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Sol Agro et hydrosystème Spatialisation (SAS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ)
- Subjects
multi-site synthesis ,data-model fusion ,Global and Planetary Change ,Ecology ,methane emissions ,methane model ,[SDE]Environmental Sciences ,Environmental Chemistry ,Eddy covariance ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Bayesian optimization ,General Environmental Science - Abstract
International audience; Wetlands are the largest natural source of methane (CH4) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4, but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model—iPEACE—reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (
- Published
- 2023