11 results on '"Stolarski J"'
Search Results
2. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons
- Author
-
Gorzelak, P., primary, Stolarski, J., additional, Mazur, M., additional, and Meibom, A., additional
- Published
- 2012
- Full Text
- View/download PDF
3. Comparisons of growth and condition of fluvial and resident brook trout within partially migratory populations
- Author
-
STOLARSKI, J. T., primary and HARTMAN, K. J., additional
- Published
- 2010
- Full Text
- View/download PDF
4. Effects of seawater Mg 2+ /Ca 2+ ratio and diet on the biomineralization and growth of sea urchins and the relevance of fossil echinoderms to paleoenvironmental reconstructions.
- Author
-
Kołbuk D, Di Giglio S, M'Zoudi S, Dubois P, Stolarski J, and Gorzelak P
- Subjects
- Animals, Diet, Sea Urchins, Seawater, Biomineralization, Echinodermata, Fossils
- Abstract
It has been argued that skeletal Mg/Ca ratio in echinoderms is mostly governed by Mg
2+ and Ca2+ concentrations in the ambient seawater. Accordingly, well-preserved fossil echinoderms were used to reconstruct Phanerozoic seawater Mg2+ /Ca2+ ratio. However, Mg/Ca ratio in echinoderm skeleton can be affected by a number of environmental and physiological factors, the effects of which are still poorly understood. Notably, experimental data supporting the applicability of echinoderms in paleoenvironmental reconstructions remain limited. Here, we investigated the effect of ambient Mg2+ /Ca2+ seawater ratio and diet on skeletal Mg/Ca ratio and growth rate in two echinoid species (Psammechinus miliaris and Prionocidaris baculosa). Sea urchins were tagged with manganese and then cultured in different Mg2+ /Ca2+ conditions to simulate fluctuations in the Mg2+ /Ca2+ seawater ratios in the Phanerozoic. Simultaneously, they were fed on a diet containing different amounts of magnesium. Our results show that the skeletal Mg/Ca ratio in both species varied not only between ossicle types but also between different types of stereom within a single ossicle. Importantly, the skeletal Mg/Ca ratio in both species decreased proportionally with decreasing seawater Mg2+ /Ca2+ ratio. However, sea urchins feeding on Mg-enriched diet produced a skeleton with a higher Mg/Ca ratio. We also found that although incubation in lower ambient Mg2+ /Ca2+ ratio did not affect echinoid respiration rates, it led to a decrease or inhibition of their growth. Overall, these results demonstrate that although skeletal Mg/Ca ratios in echinoderms can be largely determined by seawater chemistry, the type of diet may also influence skeletal geochemistry, which imposes constraints on the application of fossil echinoderms as a reliable proxy. The accuracy of paleoseawater Mg2+ /Ca2+ calculations is further limited by the fact that Mg partition coefficients vary significantly at different scales (between species, specimens feeding on different types of food, different ossicle types, and stereom types within a single ossicle)., (© 2020 John Wiley & Sons Ltd.)- Published
- 2020
- Full Text
- View/download PDF
5. Morphology, microstructure, crystallography, and chemistry of distinct CaCO3 deposits formed by early recruits of the scleractinian coral Pocillopora damicornis.
- Author
-
Gilis M, Meibom A, Alexander D, Grauby O, Stolarski J, and Baronnet A
- Subjects
- Animals, Anthozoa ultrastructure, Anthozoa metabolism, Calcium Carbonate metabolism
- Abstract
Scleractinian corals begin their biomineralization process shortly after larval settlement with the formation of calcium carbonate (CaCO(3)) structures at the interface between the larval tissues and the substrate. The newly settled larvae exert variable degrees of control over this skeleton formation, providing an opportunity to study a range of biocarbonate structures, some of which are transient and not observed in adult coral skeletons. Here we present a morphological, structural, crystallographic, and chemical comparison between two types of aragonite deposits observed during the skeletal development of 2-days old recruits of Pocillopora damicornis: (1) Primary septum and (2) Abundant, dumbbell-like structures, quasi-randomly distributed between initial deposits of the basal plate and not present in adult corals-At the mesoscale level, initial septa structures are formed by superimposed fan-shaped fasciculi consisting of bundles of fibers, as also observed in adult corals. This organization is not observed in the dumbbell-like structures. However, at the ultrastructural level there is great similarity between septa and dumbbell components. Both are composed of <100 nm granular units arranged into larger single-crystal domains.Chemically, a small difference is observed between the septae with an average Mg/Ca ratio around 11 mmol/mol and the dumbbell-like structures with ca. 7 mmol/mol; Sr/Ca ratios are similar in the two structures at around 8 mmol/mol-Overall, the observed differences in distribution, morphology, and chemistry between septa, which are highly conserved structures fundamental to the architecture of the skeleton, and the transient, dumbbell-like structures, suggest that the latter might be formed through less controlled biomineralization processes. Our observations emphasize the inherent difficulties involved in distinguishing different biomineralization pathways based on ultrastructural and crystallographical observations., (© 2015 Wiley Periodicals, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
6. Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis.
- Author
-
Gilis M, Meibom A, Domart-Coulon I, Grauby O, Stolarski J, and Baronnet A
- Subjects
- Animals, Anthozoa growth & development, Coral Reefs, Crystallization, Microscopy, Electron, Scanning, Anthozoa anatomy & histology, Anthozoa physiology, Calcification, Physiologic, Calcium Carbonate chemistry
- Abstract
Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is, therefore, warranted. Here, we present a thorough, multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation time-scales: A (<24 h), B (24-36 h), C (36-48 h), D (48-72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhomboidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 µm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton., (© 2014 Wiley Periodicals, Inc.)
- Published
- 2014
- Full Text
- View/download PDF
7. Ultrascale and microscale growth dynamics of the cidaroid spine of Phyllacanthus imperialis revealed by ²⁶Mg labeling and NanoSIMS isotopic imaging.
- Author
-
Gorzelak P, Stolarski J, Dery A, Dubois P, Escrig S, and Meibom A
- Subjects
- Adolescent, Animals, Humans, Isotopes, Morphogenesis, Sea Urchins anatomy & histology, Magnesium, Sea Urchins growth & development
- Abstract
Growth dynamics of the primary spine of the cidaroid sea urchin Phyllacanthus imperialis was assessed for the first time using pulsed (26) Mg-labeling and NanoSIMS isotopic imaging. The sea urchin was incubated twice (for 48 h) in artificial seawater with elevated level of (26) Mg. After each labeling event, the sea urchin was returned for 72 h to seawater with natural isotopic abundance of (26) Mg. NanoSIMS ion microprobe was subsequently used to visualize the labeled regions of the spine with submicrometer lateral resolution. The growth of the new skeleton was restricted to the distalmost and peripheral portions of the spine. Skeletogenesis involved mostly the deposition of continuous thickening layers and lateral growth involving bridges between previously formed trabeculae. The timescale of formation of individual thickening layers (ca. 1 µm in width) on the stereom trabeculae was on the order of 1 day. Longitudinal growth occurred mainly at the periphery in the form of small portions of the thickening deposits or more massive microspines that appeared to branch and fuse with those above and below. These microspines were found to grow at about 10 µm/day. These results reveal that the skeletal growth of a juvenile cidaroid spine is complex and highly heterogeneous, with different extension rates depending on the stage of the stereom development and/or direction of the growth fronts. The growth pattern observed here at the submicrometer scale provides direct evidence supporting the earlier suggestions that the lamellar structure of echinoderm stereom is formed by periodic deposition of continuous mineral layers., (© 2014 Wiley Periodicals, Inc.)
- Published
- 2014
- Full Text
- View/download PDF
8. Skeletal ontogeny in basal scleractinian micrabaciid corals.
- Author
-
Janiszewska K, Jaroszewicz J, and Stolarski J
- Subjects
- Animals, Anthozoa anatomy & histology, Anthozoa classification, Phylogeny, Tomography, X-Ray Computed, Anthozoa growth & development, Anthozoa ultrastructure
- Abstract
The skeletal ontogeny of the Micrabaciidae, one of two modern basal scleractinian lineages, is herein reconstructed based on serial micro-computed tomography sections and scanning electron micrographs. Similar to other scleractinians, skeletal growth of micrabaciids starts from the simultaneous formation of six primary septa. New septa of consecutive cycles arise between septa of the preceding cycles from unique wedge-shaped invaginations of the wall. The invagination of wall and formation of septa are accompanied by development of costae alternating in position with septa. During corallite growth, deepening invagination of the wall results in elevation of septa above the level of a horizontal base. The corallite wall is regularly perforated thus invaginated regions consist of pillars inclined downwardly and outwardly from the lower septal margins. Shortly after formation of septa (S2 and higher cycles) their upper margins bend and fuse with the neighboring members of a previous cycle, resulting in a unique septal pattern, formerly misinterpreted as "septal bifurcation." Septa as in other Scleractinia are hexamerally arranged in cycles. However, starting from the quaternaries, septa within single cycles do not appear simultaneously but are inserted in pairs and successively flank the members of a preceding cycle, invariably starting from those in the outermost parts of the septal system. In each pair, the septum adjacent to older septa arises first (e.g., the quinaries between S2 and S4 before quinaries between S3 and S4). Unique features of micrabaciid skeletal ontogeny are congruent with their basal position in scleractinian phylogeny, which was previously supported by microstructural and molecular data., (Copyright © 2012 Wiley Periodicals, Inc.)
- Published
- 2013
- Full Text
- View/download PDF
9. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.
- Author
-
Gorzelak P, Stolarski J, Mazur M, and Meibom A
- Subjects
- Animals, Bahamas, Calcium analysis, Calcium chemistry, Calcium metabolism, Echinodermata metabolism, Japan, Magnesium analysis, Magnesium chemistry, Magnesium metabolism, Temperature, Echinodermata chemistry, Echinodermata ultrastructure, Geology methods, Paleontology methods, Seawater chemistry
- Abstract
This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean., (© 2012 Blackwell Publishing Ltd.)
- Published
- 2013
- Full Text
- View/download PDF
10. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals.
- Author
-
Janiszewska K, Stolarski J, Benzerara K, Meibom A, Mazur M, Kitahara MV, and Cairns SD
- Subjects
- Animals, Anthozoa ultrastructure, Microscopy, Atomic Force, Microscopy, Electron, Scanning, Microscopy, Electron, Transmission, Anthozoa anatomy & histology
- Abstract
Micrabaciids are solitary, exclusively azooxanthellate deep-sea corals belonging to one of the deepest-living (up to 5,000 m) scleractinian representatives. All modern micrabaciid taxa (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have a porous and often very fragile skeleton consisting of two main microstructural components known also from other scleractinians: rapid accretion deposits and thickening deposits. However, at the microstructural level, the skeletal organization of the micrabaciids is distinctly different from that of other scleractinians. Rapid accretion deposits consist of alternations of superimposed "microcrystalline" (micrometer-sized aggregates of nodular nanodomains) and fibrous zones. In contrast to all shallow-water and sympatric deep-water corals so far described, the thickening deposits of micrabaciids are composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small, chip-like bundles (ca. 1-2 μm thick). Longer axes of fiber bundles are usually subparallel to the skeletal surfaces and oriented variably in this plane. The unique microstructural organization of the micrabaciid skeleton is consistent with their monophyletic status based on macromorphological and molecular data, and points to a diversity of organic matrix-mediated biomineralization strategies in Scleractinia., (Copyright © 2010 Wiley-Liss, Inc.)
- Published
- 2011
- Full Text
- View/download PDF
11. Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades within the family Faviidae.
- Author
-
Budd AF and Stolarski J
- Subjects
- Animals, Anthozoa ultrastructure, Coral Reefs, Microscopy, Electron, Scanning, Phylogeny, Anthozoa anatomy & histology, Anthozoa classification
- Abstract
Recent molecular phylogenies conflict with traditional scleractinian classification at ranks ranging from suborder to genus, challenging morphologists to discover new characters that better agree with molecular data. Such characters are essential for including fossils in analyses and tracing evolutionary patterns through geologic time. We examine the skeletal morphology of 36 species belonging to the traditional families Faviidae, Merulinidae, Pectiniidae, and Trachyphylliidae (3 Atlantic, 14 Indo-Pacific, 2 cosmopolitan genera) at the macromorphological, micromorphological, and microstructural levels. Molecular analyses indicate that the families are not monophyletic groups, but consist of six family-level clades, four of which are examined [clade XV = Diploastrea heliopora; clade XVI = Montastraea cavernosa; clade XVII ("Pacific faviids") = Pacific faviids (part) + merulinids (part) + pectiniids (part) + M. annularis complex; clade XXI ("Atlantic faviids") = Atlantic faviids (part) + Atlantic mussids]. Comparisons among molecular clades indicate that micromorphological and microstructural characters (singly and in combination) are clade diagnostic, but with two exceptions, macromorphologic characters are not. The septal teeth of "Atlantic faviids" are paddle-shaped (strong secondary calcification axes) or blocky, whereas the septal teeth of "Pacific faviids" are spine-shaped or multidirectional. Corallite walls in "Atlantic faviids" are usually septothecal, with occasional trabeculothecal elements; whereas corallite walls in "Pacific faviids" are usually trabeculothecal or parathecal or they contain abortive septa. Exceptions include subclades of "Pacific faviids" consisting of a) Caulastraea and Oulophyllia (strong secondary axes) and b) Cyphastrea (septothecal walls). Diploastrea has a diagnostic synapticulothecal wall and thick triangular teeth; Montastraea cavernosa is also distinct, possessing both "Pacific faviid" (abortive septa) and "Atlantic faviid" (paddle-shaped teeth) attributes. The development of secondary axes is similar in traditional Atlantic faviids and mussids, supporting molecular results placing them in the same clade. Subclades of "Pacific faviids" reveal differences in wall structure and the arrangement and distinctiveness of centers of rapid accretion., (Copyright © 2010 Wiley-Liss, Inc.)
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.