1. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization.
- Author
-
Sainju UM, Stevens WB, Caesar-TonThat T, Liebig MA, and Wang J
- Abstract
Little information exists about how global warming potential (GWP) is affected by management practices in agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net GWP and greenhouse gas intensity (GHGI or GWP per unit crop yield) calculated by soil respiration (GWP and GHGI) and organic C (SOC) (GWP and GHGI) methods after accounting for CO emissions from all sources (irrigation, farm operations, N fertilization, and greenhouse gas [GHG] fluxes) and sinks (crop residue and SOC) in a Lihen sandy loam from 2008 to 2011 in western North Dakota. Treatments were two irrigation practices (irrigated vs. nonirrigated) and five cropping systems (conventional-till malt barley [ L.] with N fertilizer [CTBN], conventional-till malt barley with no N fertilizer [CTBO], no-till malt barley-pea [ L.] with N fertilizer [NTB-P], no-till malt barley with N fertilizer, and no-till malt barley with no N fertilizer [NTBO]). While CO equivalents were greater with irrigation, tillage, and N fertilization than without, NO and CH fluxes were 2 to 218 kg CO eq. ha greater in nonirrigated NTBN and irrigated CTBN than in other treatments. Previous year's crop residue and C sequestration rate were 202 to 9316 kg CO eq. ha greater in irrigated NTB-P than in other treatments. Compared with other treatments, GWP and GWP were 160 to 9052 kg CO eq. ha lower in irrigated and nonirrigated NTB-P. Similarly, GHGI and GHGI were lower in nonirrigated NTB-P than in other treatments. Regardless of irrigation practices, NTB-P may lower net GHG emissions more than other treatments in the northern Great Plains., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.) more...
- Published
- 2014
- Full Text
- View/download PDF