1. Optical–Microwave Pump–Probe Studies of Electronic Properties in Novel Materials
- Author
-
K. Koltai, S. Kollarics, G. Klujber, Bence G. Márkus, M. Szieberth, Karoly Holczer, A. Bojtor, J. Volk, and Ferenc Simon
- Subjects
Materials science ,Silicon ,optically detected magnetic resonance ,slot line ,FOS: Physical sciences ,chemistry.chemical_element ,Applied Physics (physics.app-ph) ,02 engineering and technology ,engineering.material ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,nitrogen-vacancy centers ,0103 physical sciences ,Nanotechnology ,coplanar waveguides ,Spin (physics) ,coplanar wave-guide ,Applied Physics ,010302 applied physics ,Quantum Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Spectrometer ,business.industry ,Photoconductivity ,magnetic-resonance ,Diamond ,Physics - Applied Physics ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Semiconductor ,chemistry ,Qubit ,engineering ,microwave-detected photoconductivity decay ,Optoelectronics ,cond-mat.str-el ,physics.app-ph ,0210 nano-technology ,business ,Microwave - Abstract
Combined microwave-optical pump-probe methods are emerging to study the quantum state of spin qubit centers and the charge dynamics in semiconductors. A major hindrance is the limited bandwidth of microwave irradiation/detection circuitry which could be overcome with the use of broadband coplanar waveguides (CPW). We present the development and performance characterization of two spectrometers: an optically detected magnetic resonance spectrometer (ODMR) and a microwave detected photoconductivity measurement. In the first method light serves as detection and microwaves excite the investigated medium, while in the second the roles are interchanged. The performance is demonstrated by measuring ODMR maps on the nitrogen-vacancy center in diamond and time resolved photoconductivity in p-doped silicon. The results demonstrate both an efficient coupling of the microwave irradiation to the samples as well as an excellent sensitivity for minute changes in sample conductivity., 5 pages, 5 figures
- Published
- 2020
- Full Text
- View/download PDF