Hui Cai, Xavier Marie, Emmanuel Soignard, M. Manca, Bin Chen, Bernhard Urbaszek, Shery L. Y. Chang, Afsaneh Khosravi, Gang Wang, Sefaattin Tongay, ASU - School for Engineering of Matter, Transport and Energy, Arizona State University [Tempe] (ASU), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), LeRoy Eyring Center for Solid State Science, Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Pseudo-one dimensional (pseudo-1D) materials are a new-class of materials where atoms are arranged in chain like structures in two-dimensions (2D). Examples include recently discovered black phosphorus, ReS2 and ReSe2 from transition metal dichalcogenides, TiS3 and ZrS3 from transition metal trichalcogenides and most recently GaTe. The presence of structural anisotropy impacts their physical properties and leads to direction dependent light-matter interactions, dichroic optical responses, high mobility channels, and anisotropic thermal conduction. Despite the numerous reports on the vapor phase growth of isotropic TMDCs and post transition metal chalcogenides such as MoS2 and GaSe, the synthesis of pseudo-1D materials is particularly difficult due to the anisotropy in interfacial energy, which stabilizes dendritic growth rather than single crystalline growth with well-defined orientation. The growth of monoclinic GaTe has been demonstrated on flexible mica substrates with superior photodetecting performance. In this work, we demonstrate that pseudo-1D monoclinic GaTe layers can be synthesized on a variety of other substrates including GaAs (111), Si (111) and c-cut sapphire by physical vapor transport techniques. High resolution transmission electron microscopy (HRTEM) measurements, together with angle resolved micro-PL and micro-Raman techniques, provide for the very first time atomic scale resolution experiments on pseudo-1D structures in monoclinic GaTe and anisotropic properties. Interestingly, GaTe nanomaterials grown on sapphire exhibit highly efficient and narrow localized emission peaks below the band gap energy, which are found to be related to select types of line and point defects as evidenced by PL and Raman mapping scans. It makes the samples grown on sapphire more prominent than those grown on GaAs and Si, which demonstrate more regular properties., 15 pages, 3 figures, supplement (submitted version)