1. Evaluating 0–0 Energies with Theoretical Tools: A Short Review
- Author
-
Pierre-François Loos, Denis Jacquemin, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Computation ,Ab initio ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Analytical Chemistry ,Quality (physics) ,Physics - Chemical Physics ,0103 physical sciences ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Chemical Physics (physics.chem-ph) ,Physics ,Valence (chemistry) ,010304 chemical physics ,Basis (linear algebra) ,Organic Chemistry ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,Computational physics ,Hybrid functional ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Excited state ,Physics - Computational Physics ,Energy (signal processing) - Abstract
For a given electronic excited state, the 0-0 energy ($T_0$ or $T_{00}$) is the simplest property allowing straightforward and physically-sound comparisons between theory and (accurate) experiment. However, the computation of 0-0 energies with \emph{ab initio} approaches requires determining both the structure and the vibrational frequencies of the excited state, which limits the quality of the theoretical models that can be considered in practice. This explains why only a rather limited, yet constantly increasing, number of works have been devoted to the determination of this property. In this contribution, we review these efforts with a focus on benchmark studies carried out for both gas phase and solvated compounds. Over the years, not only as the size of the molecules increased, but the refinement of the theoretical tools has followed the same trend. Though the results obtained in these benchmarks significantly depend on both the details of the protocol and the nature of the excited states, one can now roughly estimate, in the case of valence transitions, the overall accuracy of theoretical schemes as follows: $1$ eV for CIS, $0.2$--$0.3$ eV for CIS(D), $0.2$--$0.4$ eV for TD-DFT when one employs hybrid functionals, $0.1$--$0.2$ eV for ADC(2) and CC2, and $0.04$ eV for CC3, the latter approach being the only one delivering chemical accuracy on a near-systematic basis., Comment: 15 pages, 6 figures
- Published
- 2019